Coalitional Games
Stéphane Airiau and Wojtek Jamroga

Stéphane: ILLC @ University of Amsterdam
Wojtek: ICR @ University of Luxembourg

European Agent Systems Summer School
Torino, Italy, September 2009
2. Reasoning about Coalitions

Part 2. Reasoning about Coalitions

Reasoning about Coalitions

2.1 Modal Logic
2.2 ATL
2.3 Rational Play (ATLP)
2.4 Imperfect Information
2.5 Model Checking
2.6 References
2. Reasoning about Coalitions

Outline

- In the previous chapter, we showed how coalitions can be rationally formed
2. Reasoning about Coalitions

Outline

- In the previous chapter, we showed how coalitions can be rationally formed
- In this chapter, we show how one can use modal logic to reason about their play and their outcome.
2. Reasoning about Coalitions

1. Modal Logic

2.1 Modal Logic
2. Reasoning about Coalitions

1. Modal Logic

Why logic at all?

- framework for thinking about systems,
- makes one realise the implicit assumptions,
- ...and then we can:
- investigate them, accept or reject them,
- relax some of them and still use a part of the formal and conceptual machinery;
Why logic at all?

- framework for thinking about systems,
- makes one realise the implicit assumptions,
- ... and then we can:
 - investigate them, accept or reject them,
 - relax some of them and still use a part of the formal and conceptual machinery;
- reasonably expressive but simpler and more rigorous than the full language of mathematics.
2. Reasoning about Coalitions

1. Modal Logic

Why logic at all?

- **Verification**: check specification against implementation
- Executable specifications
- Planning as model checking
2. Reasoning about Coalitions

1. Modal Logic

Why logic at all?

- **Verification**: check specification against implementation
- **Executable specifications**
- **Planning as model checking**

- **Game solving, mechanism design, and reasoning about games** have natural interpretation as logical problems
Modal logic is an extension of classical logic by new connectives □ and ◊: necessity and possibility.
Modal logic is an extension of classical logic by new connectives \(\Box \) and \(\Diamond \): necessity and possibility.

- “\(\Box p \) is true” means \(p \) is necessarily true, i.e. true in every possible scenario,
- “\(\Diamond p \) is true” means \(p \) is possibly true, i.e. true in at least one possible scenario.
Various modal logics:

- knowledge \rightarrow epistemic logic,
- beliefs \rightarrow doxastic logic,
- obligations \rightarrow deontic logic,
- actions \rightarrow dynamic logic,
- time \rightarrow temporal logic,

and combinations of the above

Most famous multimodal logic: BDI logic of beliefs, desires, intentions (and time)
2. Reasoning about Coalitions

1. Modal Logic

Definition 2.1 (Kripke Semantics)

Kripke model (possible world model):

\[M = \langle \mathcal{W}, R, \pi \rangle, \]

- \(\mathcal{W} \) is a set of **possible worlds**
- \(R \subseteq \mathcal{W} \times \mathcal{W} \) is an **accessibility relation**
- \(\pi : \mathcal{W} \rightarrow \mathcal{P}(\Pi) \) is a **valuation of propositions**.
Definition 2.1 (Kripke Semantics)

Kripke model (possible world model):

\[M = \langle W, R, \pi \rangle, \]

- \(W \) is a set of possible worlds
- \(R \subseteq W \times W \) is an accessibility relation
- \(\pi : W \rightarrow \mathcal{P}(\Pi) \) is a valuation of propositions.

\[M, w \models \Box \varphi \text{ iff for every } w' \in W \text{ with } wRw' \text{ we have that } M, w' \models \varphi. \]
2. Reasoning about Coalitions

1. Modal Logic

An Example

\[q_0 \quad x=0 \]
\[q_2 \quad x=2 \]
\[q_1 \quad x=1 \]
2. Reasoning about Coalitions

1. Modal Logic

An Example

\[
q_0 \quad x=0
\]

\[
q_2 \quad x=2
\]

\[
q_1 \quad x=1
\]
2. Reasoning about Coalitions

1. Modal Logic

An Example

\[q_0 \rightarrow K_s x = 1 \]
2. Reasoning about Coalitions

1. Modal Logic

An Example

\[x \models 1 \rightarrow K_s x \models 1 \]
2. Reasoning about Coalitions

2. ATL

2.2 ATL
2. Reasoning about Coalitions

ATL: What Agents Can Achieve

- Temporal logic meets game theory
- Main idea: cooperation modalities
ATL: What Agents Can Achieve

- **ATL: Agent Temporal Logic** [Alur et al. 1997]
- Temporal logic meets game theory
- Main idea: cooperation modalities

\[\langle A \rangle \Phi: \text{coalition } A \text{ has a collective strategy to enforce } \Phi \]
\(\langle \text{jamesbond} \rangle \diamond \text{win}: \)

“James Bond has an infallible plan to eventually win”
2. Reasoning about Coalitions

2. ATL

- \(\langle \text{jamesbond} \rangle \Diamond \text{win}:\) “James Bond has an infallible plan to eventually win”

- \(\langle \text{jamesbond, bondsgirl} \rangle \text{fun} \mathcal{U} \text{shot}:\) “James Bond and his girlfriend are able to have fun until someone shoots at them”
2. Reasoning about Coalitions

2. ATL

- \(\langle j\rangle win: \)
 “James Bond has an infallible plan to eventually win”

- \(\langle j, b \rangle fun U \) shot:
 “James Bond and his girlfriend are able to have fun until someone shoots at them”

- “Vanilla” ATL: every temporal operator preceded by exactly one cooperation modality;

- ATL*: no syntactic restrictions;
ATL Models: Concurrent Game Structures

- Agents, actions, transitions, atomic propositions
- Atomic propositions + interpretation
- Actions are abstract
Definition 2.2 (Concurrent Game Structure)

A concurrent game structure is a tuple $M = \langle \text{Agt}, St, \pi, Act, d, o \rangle$, where:

- Agt: a finite set of all agents
- St: a set of states
- π: a valuation of propositions
- Act: a finite set of (atomic) actions
- d: $\text{Agt} \times St \rightarrow P(Act)$ defines actions available to an agent in a state
- o: a deterministic transition function that assigns outcome states $q' = o(q, \alpha_1, \ldots, \alpha_k)$ to states and tuples of actions
Definition 2.2 (Concurrent Game Structure)

A concurrent game structure is a tuple
\[M = \langle \text{Agt}, St, \pi, Act, d, o \rangle, \text{ where:} \]

- \text{Agt}: a finite set of all agents
2. Reasoning about Coalitions

Definition 2.2 (Concurrent Game Structure)

A concurrent game structure is a tuple $M = \langle \text{Agt}, St, \pi, Act, d, o \rangle$, where:

- Agt: a finite set of all agents
- St: a set of states
Definition 2.2 (Concurrent Game Structure)

A concurrent game structure is a tuple \(M = \langle \text{Agt}, \text{St}, \pi, \text{Act}, d, o \rangle \), where:

- \(\text{Agt} \): a finite set of all agents
- \(\text{St} \): a set of states
- \(\pi \): a valuation of propositions
Definition 2.2 (Concurrent Game Structure)

A **concurrent game structure** is a tuple $M = \langle \text{Agt}, St, \pi, Act, d, o \rangle$, where:

- **Agt**: a finite set of all agents
- **St**: a set of states
- **π**: a valuation of propositions
- **Act**: a finite set of (atomic) actions

$d : \text{Agt} \times St \rightarrow P(\text{Act})$ defines actions available to an agent in a state.

$o : St \rightarrow (\text{states}) \times (\text{tuples of actions}) \rightarrow q' = o(q, \alpha_1, ..., \alpha_k)$ assigns outcome states to states and tuples of actions.
Definition 2.2 (Concurrent Game Structure)

A concurrent game structure is a tuple $M = \langle \text{Ag}, S, \pi, A, d, o \rangle$, where:

- Ag: a finite set of all agents
- S: a set of states
- π: a valuation of propositions
- A: a finite set of (atomic) actions
- $d : \text{Ag} \times S \rightarrow \mathcal{P}(A)$ defines actions available to an agent in a state
- o: a deterministic transition function that assigns outcome states $q' = o(q, \alpha_1, \ldots, \alpha_k)$ to states and tuples of actions
Example: Robots and Carriage
Example: Robots and Carriage
Definition 2.3 (Strategy)

A strategy is a conditional plan.
Definition 2.3 (Strategy)

A strategy is a conditional plan. We represent strategies by functions $s_a : St \rightarrow Act$.
Definition 2.3 (Strategy)

A strategy is a conditional plan. We represent strategies by functions $s_a : St \rightarrow Act$.

Function $\text{out}(q, S_A)$ returns the set of all paths that may result from agents A executing strategy S_A from state q onward.
Definition 2.4 (Semantics of ATL)

\[M, q \models \langle A \rangle \Phi \] iff there is a collective strategy \(S_A \) such that, for every path \(\lambda \in \text{out}(q, S_A) \), we have \(M, \lambda \models \Phi \).
Definition 2.4 (Semantics of ATL)

- **Modalities:**
 - \(M, q \models \langle \langle A \rangle \rangle \Phi \) iff there is a collective strategy \(S_A \) such that, for every path \(\lambda \in \text{out}(q, S_A) \), we have \(M, \lambda \models \Phi \).
 - \(M, \lambda \models \Box \varphi \) iff \(M, \lambda[1] \models \varphi \).
 - \(M, \lambda \models \Diamond \varphi \) iff there exists some \(i \geq 0 \) such that \(M, \lambda[i] \models \varphi \).
 - \(M, \lambda \models \varphi U \psi \) iff there exists some \(i \geq 0 \) such that \(M, \lambda[i] \models \psi \) and for all \(0 \leq j \leq i \), \(M, \lambda[j] \models \varphi \).
Definition 2.4 (Semantics of ATL)

\[M, q \models \langle A \rangle \Phi \]
iff there is a collective strategy \(S_A \) such that, for every path \(\lambda \in out(q, S_A) \), we have \(M, \lambda \models \Phi \).

\[M, \lambda \models \Diamond \varphi \]
iff \(M, \lambda[1] \models \varphi \);

\[M, \lambda \models \Diamond \varphi \]
iff \(M, \lambda[i] \models \varphi \) for some \(i \geq 0 \);
Definition 2.4 (Semantics of ATL)

\[M, q \models \langle A \rangle \Phi \quad \text{iff there is a collective strategy } S_A \text{ such that, for every path } \lambda \in \text{out}(q, S_A), \text{ we have } M, \lambda \models \Phi. \]

\[M, \lambda \models \bigcirc \varphi \quad \text{iff } M, \lambda[1] \models \varphi; \]

\[M, \lambda \models \Diamond \varphi \quad \text{iff } M, \lambda[i] \models \varphi \text{ for some } i \geq 0; \]

\[M, \lambda \models \Box \varphi \quad \text{iff } M, \lambda[i] \models \varphi \text{ for all } i \geq 0; \]
2. Reasoning about Coalitions

2. ATL

Definition 2.4 (Semantics of ATL)

\[M, q \models \langle A \rangle \Phi \]
iff there is a collective strategy \(S_A \) such that, for every path \(\lambda \in out(q, S_A) \), we have \(M, \lambda \models \Phi \).

\[M, \lambda \models \bigcirc \varphi \]
iff \(M, \lambda[1] \models \varphi \);

\[M, \lambda \models \Diamond \varphi \]
iff \(M, \lambda[i] \models \varphi \) for some \(i \geq 0 \);

\[M, \lambda \models \Box \varphi \]
iff \(M, \lambda[i] \models \varphi \) for all \(i \geq 0 \);

\[M, \lambda \models \varphi \bigcup \psi \]
iff \(M, \lambda[i] \models \psi \) for some \(i \geq 0 \), and \(M, \lambda[j] \models \varphi \) for all \(0 \leq j \leq i \).
Definition 2.4 (Semantics of ATL)

\(M, q \models p \) \quad \text{iff} \quad p \text{ is in } \pi(q); \\
\(M, q \models \varphi \land \psi \) \quad \text{iff} \quad M, q \models \varphi \text{ and } M, q \models \psi; \\
\(M, q \models \langle A \rangle \Phi \) \quad \text{iff} \quad \text{there is a collective strategy } S_A \text{ such that, for every path } \lambda \in out(q, S_A), \text{ we have } M, \lambda \models \Phi. \\
\(M, \lambda \models \Box \varphi \) \quad \text{iff} \quad M, \lambda[1] \models \varphi; \\
\(M, \lambda \models \Diamond \varphi \) \quad \text{iff} \quad M, \lambda[i] \models \varphi \text{ for some } i \geq 0; \\
\(M, \lambda \models \quad \Box \varphi \) \quad \text{iff} \quad M, \lambda[i] \models \varphi \text{ for all } i \geq 0; \\
\(M, \lambda \models \varphi U \psi \) \quad \text{iff} \quad M, \lambda[i] \models \psi \text{ for some } i \geq 0, \text{ and } M, \lambda[j] \models \varphi \text{ for all } 0 \leq j \leq i.
Example: Robots and Carriage

\[q_0 \rightarrow \langle \langle 1 \rangle \rangle \Box \neg \text{pos}_1 \]
Example: Robots and Carriage

\[pos_0 \rightarrow \langle 1 \rangle \Box \neg pos_1 \]
Example: Robots and Carriage

\[\text{pos}_0 \rightarrow \langle 1 \rangle \Box \neg \text{pos}_1 \]
2. Reasoning about Coalitions

Example: Robots and Carriage

\[
\text{pos}_0 \rightarrow \langle 1 \rangle \Box \neg \text{pos}_1
\]
Example: Robots and Carriage

\[\text{pos}_0 \rightarrow \langle 1 \rangle \square \neg \text{pos}_1 \]
Example: Robots and Carriage

\[\text{pos}_0 \rightarrow \langle 1 \rangle \square \neg \text{pos}_1 \]
Example: Robots and Carriage

pos_0 \rightarrow \langle 1 \rangle \Box \neg \text{pos}_1
Temporal operators allow a number of useful concepts to be formally specified
Temporal operators allow a number of useful concepts to be formally specified

- safety properties
- liveness properties
- fairness properties
2. Reasoning about Coalitions

Safety (maintenance goals):

“something bad will not happen”
“something good will always hold”
2. Reasoning about Coalitions

Safety (maintenance goals):

“something bad will not happen”
“something good will always hold”

Typical example:

□¬bankrupt
2. Reasoning about Coalitions

Safety (maintenance goals):

“something bad will not happen”
“something good will always hold”

Typical example:

□¬bankrupt

Usually: □¬...
2. Reasoning about Coalitions

Safety (maintenance goals):

“something bad will not happen”
“something good will always hold”

Typical example:

□¬bankrupt

Usually: □¬....

In ATL:

⟨⟨os⟩⟩□¬crash
Liveness (achievement goals):

“something good will happen”
Liveness (achievement goals):

“something good will happen”

Typical example:

◊ rich

Usually: ◊
2. Reasoning about Coalitions

Liveness (achievement goals):

“something good will happen”

Typical example:

◊ rich

Usually: ◇

In ATL:

$\langle \langle alice, bob \rangle \diamond paperAccepted$
Fairness (service goals):

“if something is attempted/requested, then it will be successful/allocated”
Fairness (service goals):

“if something is attempted/requested, then it will be successful/allocated”

Typical examples:

\(\square (\text{attempt} \rightarrow \lozenge \text{success}) \)

\(\square \lozenge \text{attempt} \rightarrow \square \lozenge \text{success} \)
Fairness (service goals):

“if something is attempted/requested, then it will be successful/allocated”

Typical examples:

\[\square (\text{attempt} \rightarrow \lozenge \text{success})\]
\[\square \lozenge \text{attempt} \rightarrow \square \lozenge \text{success}\]

In ATL* (!):

\[\langle \langle \text{prod}, \text{dlr} \rangle \rangle \square (\text{carRequested} \rightarrow \lozenge \text{carDelivered})\]
Connection to Games

- Concurrent game structure = generalized extensive game
Connection to Games

- Concurrent game structure = generalized extensive game
- $\langle A \rangle \gamma$: $\langle A \rangle$ splits the agents into proponents and opponents
- γ defines the winning condition
Connection to Games

- Concurrent game structure = generalized extensive game

- $\langle A \rangle \gamma$: $\langle A \rangle$ splits the agents into proponents and opponents

- γ defines the winning condition
 \leadsto infinite 2-player, binary, zero-sum game
Connection to Games

- Concurrent game structure = generalized extensive game
- $\langle A \rangle \gamma: \langle A \rangle$ splits the agents into proponents and opponents
- γ defines the winning condition
- \Rightarrow infinite 2-player, binary, zero-sum game
- Flexible and compact specification of winning conditions
Solving a game \approx checking if $M, q \models \langle A \rangle \gamma$
- Solving a game \(\approx \) checking if \(M, q \models \langle A \rangle \gamma \)

- But: do we really want to consider all the possible plays?
2.3 Rational Play (ATLP)
Game-theoretical analysis of games:

- *Solution concepts* define rationality of players
2. Reasoning about Coalitions

3. Rational Play (ATLP)

Game-theoretical analysis of games:

- *Solution concepts* define rationality of players
 - maxmin
 - Nash equilibrium
 - subgame-perfect Nash
 - undominated strategies
 - Pareto optimality
Game-theoretical analysis of games:

- *Solution concepts* define rationality of players
 - maxmin
 - Nash equilibrium
 - subgame-perfect Nash
 - undominated strategies
 - Pareto optimality

- Then: we assume that players play rationally
- ...and we ask about the outcome of the game under this assumption
2. Reasoning about Coalitions

3. Rational Play (ATLP)

Game-theoretical analysis of games:

- **Solution concepts** define rationality of players
 - maxmin
 - Nash equilibrium
 - subgame-perfect Nash
 - undominated strategies
 - Pareto optimality

- Then: we assume that players play rationally
- ...and we ask about the outcome of the game under this assumption

- Role of rationality criteria: **constrain the possible game moves** to “sensible” ones
2. Reasoning about Coalitions

3. Rational Play (ATLP)

\[
\begin{align*}
q_0 & \xrightarrow{\text{start}} q_0 \\
q_1 & \xrightarrow{Tt} q_2 \\
q_2 & \xrightarrow{Th} q_3 \\
q_3 & \xrightarrow{Hh} q_4 \\
q_4 & \xrightarrow{Tt} q_5 \\
q_5 & \xrightarrow{Th} q_1
\end{align*}
\]
2. Reasoning about Coalitions

3. Rational Play (ATLP)

start $\rightarrow \neg \langle \langle 1 \rangle \rangle \diamond \text{money}_1$
start $\rightarrow \neg \langle 1 \rangle \Diamond \text{money}_1$

start $\rightarrow \neg \langle 2 \rangle \Diamond \text{money}_2$
2. Reasoning about Coalitions

3. Rational Play (ATLP)

\[
\text{start} \rightarrow \neg\langle 1 \rangle \diamond \text{money}_1
\]

\[
\text{start} \rightarrow \neg\langle 2 \rangle \diamond \text{money}_2
\]
2. Reasoning about Coalitions

3. Rational Play (ATLP)

ATL + Plausibility (ATLP)

ATL: reasoning about *all* possible behaviors.

\[\langle \langle A \rangle \rangle \varphi : \text{agents } A \text{ have *some* collective strategy to enforce } \varphi \text{ against *any* response of their opponents.} \]
2. Reasoning about Coalitions

3. Rational Play (ATLP)

ATL + Plausibility (ATLP)

ATL: reasoning about *all* possible behaviors.

\[\langle A \rangle \varphi: \text{agents } A \text{ have } \text{some} \text{ collective strategy to enforce } \varphi \text{ against any } \text{response of their opponents.} \]

ATLP: reasoning about *plausible* behaviors.

\[\langle A \rangle \varphi: \text{agents } A \text{ have a } \text{plausible} \text{ collective strategy to enforce } \varphi \text{ against any } \text{plausible} \text{ response of their opponents.} \]
ATL + Plausibility (ATLP)

ATL: reasoning about *all* possible behaviors.

\[\langle A \rangle \varphi: \text{agents } A \text{ have some collective strategy to enforce } \varphi \text{ against any response of their opponents.}\]

ATLP: reasoning about *plausible* behaviors.

\[\langle A \rangle \varphi: \text{agents } A \text{ have a plausible collective strategy to enforce } \varphi \text{ against any plausible response of their opponents.}\]

Important

The possible strategies of both \(A \) and \(\text{Agt}\setminus A \) are restricted.
New in ATLP:

\textbf{(set-pl \(\omega\)) :} the set of plausible profiles is \textit{set/reset} to the strategies described by \(\omega\).

Only \textit{plausible strategy profiles} are considered!
New in ATLP:

\(\texttt{set-pl} \omega \) : the set of plausible profiles is \texttt{set/reset} to the strategies described by \(\omega \).
Only plausible strategy profiles are considered!

Example: \(\texttt{set-pl greedy}_1 \langle 2 \rangle \Diamond \text{money}_2 \)
Concurrent game structures with plausibility

\[M = (\text{Ag}t, St, \Pi, \pi, Act, d, \delta, \Upsilon, \Omega, \| \cdot \|) \]
Concurrent game structures with plausibility

\[M = (\text{Agt}, \text{St}, \Pi, \pi, \text{Act}, d, \delta, \mathcal{Y}, \Omega, \| \cdot \|) \]

- \(\mathcal{Y} \subseteq \Sigma \): set of (plausible) strategy profiles

\[
\begin{array}{c|cc}
 & \text{Deny} & \text{Confess} \\
\hline
\text{Deny} & -2, -2 & -5, -1 \\
\text{Confess} & -1, -5 & -4, -4 \\
\end{array}
\]

\(\mathcal{Y} \) represents Nash equilibria in the game.
Concurrent game structures with plausibility

\[M = (\text{Agt}, St, \Pi, \pi, Act, d, \delta, \Upsilon, \Omega, \| \cdot \|) \]

- \(\Upsilon \subseteq \Sigma \): set of (plausible) strategy profiles

- \(\Omega = \{\omega_1, \omega_2, \ldots\} \): set of plausibility terms

Example: \(\omega_{NE} \) may stand for all Nash equilibria
Concurrent game structures with plausibility

\[M = (\text{Agt}, St, \Pi, \pi, Act, d, \delta, \Upsilon, \Omega, \| \cdot \|) \]

- \(\Upsilon \subseteq \Sigma \): set of (plausible) strategy profiles

- \(\Omega = \{ \omega_1, \omega_2, \ldots \} \): set of plausibility terms

 Example: \(\omega_{NE} \) may stand for all Nash equilibria

- \(\| \cdot \| : St \rightarrow (\Omega \rightarrow \mathcal{P}((\Sigma))) \): plausibility mapping

 Example: \(\| \omega_{NE} \|_q = \{(\text{confess}, \text{confess})\} \)
Outcome = Paths that may occur when agents \(A \) perform \(s_A \)
Outcome = Paths that may occur when agents A perform s_A when only plausible strategy profiles from Υ are played.
Outcome = Paths that may occur when agents A perform s_A when only plausible strategy profiles from Υ are played

$$\text{out}_\Upsilon(q, s_A) =$$

$$\{ \lambda \in St^+ \mid \exists t \in \Upsilon(s_A) \forall i \in \mathbb{N} \ (\lambda[i + 1] = \delta(\lambda[i], t(\lambda[i]))) \}$$
2. Reasoning about Coalitions

Outcome = Paths that may occur when agents A perform s_A when only plausible strategy profiles from Υ are played

\[\text{out}_{\Upsilon}(q, s_A) = \{ \lambda \in St^+ \mid \exists t \in \Upsilon(s_A) \forall i \in \mathbb{N} (\lambda[i + 1] = \delta(\lambda[i], t(\lambda[i]))) \} \]
2. Reasoning about Coalitions

3. Rational Play (ATLP)

Outcome = Paths that may occur when agents A perform s_A when only plausible strategy profiles from Υ are played

\[
\text{out}_\Upsilon(q, s_A) = \{ \lambda \in St^+ \mid \exists t \in \Upsilon(s_A) \forall i \in \mathbb{N} \left(\lambda[i + 1] = \delta(\lambda[i], t(\lambda[i])) \right) \}
\]

P: the players always show same sides of their coins
2. Reasoning about Coalitions

3. Rational Play (ATLP)

Outcome = Paths that may occur when agents A perform s_A when only plausible strategy profiles from Υ are played

\[\text{out}_\Upsilon(q, s_A) = \{ \lambda \in St^+ \mid \exists t \in \Upsilon(s_A) \forall i \in \mathbb{N} (\lambda[i + 1] = \delta(\lambda[i], t(\lambda[i]))) \} \]

\[P: \text{the players always show same sides of their coins} \]

\[s_1: \text{always show “heads”} \]
Semantics of ATLP

\[M, q \models \langle A \rangle \gamma \] iff there is a strategy \(s_A \) consistent with \(\gamma \) such that \(M, \lambda \models \gamma \) for all \(\lambda \in \text{out}_{\gamma}(q, s_A) \).

\[M, q \models (\text{set-pl} \ \omega) \varphi \] iff \(M^\omega, q \models \varphi \) where the new model \(M^\omega \) is equal to \(M \) but the new set \(\gamma^\omega \) of plausible strategy profiles is set to \(\| \omega \|_q \).
2. Reasoning about Coalitions

Example: Pennies Game

\[M, q_0 \models (\text{set-pl } \omega_{NE})(2) \diamond \text{money}_2 \]
Example: Pennies Game

What is a Nash equilibrium in this game?

We need some kind of winning criteria!
Agent 1 “wins”, if $\gamma_1 \equiv \Box(\neg \text{start} \rightarrow \text{money}_1)$ is satisfied.
Agent 2 “wins”, if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.
Agent 1 “wins”, if $\gamma_1 \equiv \Box(\neg \text{start} \rightarrow \text{money}_1)$ is satisfied.
Agent 2 “wins”, if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.
2. Reasoning about Coalitions

Agent 1 “wins”, if $\gamma_1 \equiv \Box(\neg \text{start} \rightarrow \text{money}_1)$ is satisfied.

Agent 2 “wins”, if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.

\[
\begin{array}{c|cccc}
\gamma_1 \backslash \gamma_2 & hh & ht & th & tt \\
\hline
HH & 1,1 & 0,0 & 0,1 & 0,1 \\
HT & 0,0 & 0,1 & 0,1 & 0,1 \\
TH & 0,1 & 0,1 & 1,1 & 0,0 \\
TT & 0,1 & 0,1 & 0,0 & 0,1 \\
\end{array}
\]
Agent 1 “wins”, if $\gamma_1 \equiv \Box(\neg \text{start } \rightarrow \text{money}_1)$ is satisfied.
Agent 2 “wins”, if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.

Now we have a **qualitative** notion of success.
Agent 1 “wins”, if $\gamma_1 \equiv \square (\neg \text{start} \rightarrow \text{money}_1)$ is satisfied. Agent 2 “wins”, if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.

Now we have a qualitative notion of success.

$$M, q_0 \models (\text{pl} \ \omega_{NE}) \langle 2 \rangle \square (\neg \text{start} \rightarrow \text{money}_1)$$

where $\parallel \omega_{NE} \parallel_{q_0} = “\text{all profiles belonging to grey cells”}$.
How to obtain plausibility terms?

Idea

Formulae that describe plausible strategies!

\[(\text{set-pl} \sigma.\theta) \phi\]:

"suppose that \(\theta\) characterizes rational strategy profiles, then \(\phi\) holds".

Sometimes quantifiers are needed...

E.g.:

\[(\text{set-pl} \sigma.\forall \sigma' \text{dominates} (\sigma,\sigma'))\]
How to obtain plausibility terms?

Idea

Formulae that describe plausible strategies!

$$(\text{set-pl } \sigma.\theta)\varphi$: “suppose that θ characterizes rational strategy profiles, then φ holds”.
2. Reasoning about Coalitions

3. Rational Play (ATLP)

How to obtain plausibility terms?

Idea

Formulae that describe plausible strategies!

$$(\text{set-pl } \sigma.\theta)\varphi: \text{“suppose that } \theta \text{ characterizes rational strategy profiles, then } \varphi \text{ holds”}.$$

Sometimes quantifiers are needed...

E.g.: $$(\text{set-pl } \sigma. \forall \sigma' \text{ dominates}(\sigma, \sigma'))$$
Characterization of Nash Equilibrium

σ_a is a’s best response to σ (wrt $\vec{\gamma}$):

$$BR^\vec{\gamma}_a(\sigma) \equiv (\text{set-pl} \; \sigma[\text{Agt}\setminus\{a\}]) (\langle a \rangle_{\gamma_a} \rightarrow (\text{set-pl} \; \sigma) \langle \emptyset \rangle_{\gamma_a})$$
Characterization of Nash Equilibrium

\(\sigma_a \) is \(a \)'s best response to \(\sigma \) (wrt \(\gamma \)):

\[
BR^\gamma_a(\sigma) \equiv (\text{set-pl} \ \sigma[\text{Agt} \setminus \{a\}]) (\langle a \rangle \gamma_a \rightarrow (\text{set-pl} \ \sigma)\langle \emptyset \rangle \gamma_a)
\]

\(\sigma \) is a Nash equilibrium:

\[
NE^\gamma(\sigma) \equiv \bigwedge_{a \in \text{Agt}} BR^\gamma_a(\sigma)
\]
Example: Pennies Game revisited

$\gamma_1 \equiv \Box(\neg \text{start } \rightarrow \text{money}_1)$; $\gamma_2 \equiv \Diamond \text{money}_2$.

$M_1, q_0 \models (\text{set-pl} \ \sigma. NE^{\gamma_1, \gamma_2}(\sigma))(\langle 2 \rangle) \Box(\neg \text{start } \rightarrow \text{money}_1)$

...where $NE^{\gamma_1, \gamma_2}(\sigma)$ is defined as on the last slide.
Characterizations of Other Solution Concepts

\(\sigma\) is a subgame perfect Nash equilibrium:

\[
SPN^\gamma(\sigma) \equiv \langle \emptyset \rangle \Box NE^\gamma(\sigma)
\]

\(\sigma\) is Pareto optimal:

\[
PO^\gamma(\sigma) \equiv \forall \sigma' \left(\bigwedge_{a \in \text{Agt}} ((\text{set-pl } \sigma')\langle \emptyset \rangle \gamma_a \rightarrow (\text{set-pl } \sigma)\langle \emptyset \rangle \gamma_a) \lor \bigvee_{a \in \text{Agt}} ((\text{set-pl } \sigma)\langle \emptyset \rangle \gamma_a \land \neg (\text{set-pl } \sigma')\langle \emptyset \rangle \gamma_a) \right).
\]
σ is **undominated**:

\[
UNDOM(\sigma) \equiv \forall \sigma_1 \forall \sigma_2 \exists \sigma_3 \\
\left(((\text{set-pl} \langle \sigma_1^a, \sigma_2^{\text{Agt}\setminus\{a\}} \rangle) \langle \emptyset \rangle) \gamma_a \rightarrow \\
(\text{set-pl} \langle \sigma_1^a, \sigma_2^{\text{Agt}\setminus\{a\}} \rangle) \langle \emptyset \rangle \gamma_a) \\
\lor ((\text{set-pl} \langle \sigma_1^a, \sigma_3^{\text{Agt}\setminus\{a\}} \rangle) \langle \emptyset \rangle) \gamma_a \land \\
\neg (\text{set-pl} \langle \sigma_1^a, \sigma_3^{\text{Agt}\setminus\{a\}} \rangle) \langle \emptyset \rangle \gamma_a) \right).
\]
Theorem 2.5

The characterizations coincide with game-theoretical solution concepts in the class of game trees.
2.4 Imperfect Information
How can we reason about extensive games with imperfect information?
How can we reason about extensive games with imperfect information?

Let’s put ATL and epistemic logic in one box.
How can we reason about extensive games with imperfect information?

Let’s put ATL and epistemic logic in one box.

⇝ Problems!
2. Reasoning about Coalitions

4. Imperfect Information

\[(\cdot,\cdot)\] start

\(q_0\)

\(q_1\) \(q_2\) \(q_3\) \(q_4\) \(q_5\) \(q_6\)

\((A,K)\) \((A,Q)\) \((K,A)\) \((K,Q)\) \((Q,A)\) \((Q,K)\)

\(q_7\) \(q_8\) \(q_9\) \(q_{10}\) \(q_{11}\) \(q_{12}\) \(q_{13}\) \(q_{14}\) \(q_{15}\) \(q_{16}\) \(q_{17}\) \(q_{18}\)

\((A,K)\) \((Q,A)\) \((K,Q)\) \((A,Q)\) \((Q,Q)\) \((A,K)\) \((Q,K)\) \((K,A)\) \((Q,Q)\)

\(\text{win} \quad \text{win} \quad \text{win} \quad \text{win} \quad \text{win} \quad \text{win} \quad \text{win} \quad \text{win}\)
2. Reasoning about Coalitions

4. Imperfect Information

Stéphane Airiau and Wojtek Jamroga · Coalitional Games
2. Reasoning about Coalitions

4. Imperfect Information

\(q_0\) is the start state.

\(q_1, q_2, \ldots, q_{18}\) are the states.

\((A,K), (A,Q), (K,A), (K,Q), (Q,A), (Q,K)\) are actions.

\(\text{keep}, \text{trade}\) are actions.

\(\text{win}\) is the winning condition.

\(\text{start} \rightarrow \langle \langle a \rangle \rangle \Diamond \text{win}\)
2. Reasoning about Coalitions

4. Imperfect Information

\[start \rightarrow \langle a \rangle \Diamond \text{win} \]

\[start \rightarrow K_a \langle a \rangle \Diamond \text{win} \]
Does it make sense?
Problem:

Strategic and epistemic abilities are *not* independent!
2. Reasoning about Coalitions

Problem:

Strategic and epistemic abilities are *not* independent!

\[\langle A \rangle \Phi = A \text{ can enforce } \Phi \]
Problem:

Strategic and epistemic abilities are *not* independent!

\(\langle A \rangle \Phi = A \) can enforce \(\Phi \)

It should at least mean that \(A \) are able to *identify* and *execute* the right strategy!
Problem:
Strategic and epistemic abilities are not independent!

\[\langle A \rangle \Phi = A \text{ can enforce } \Phi \]

It should at least mean that \(A \) are able to identify and execute the right strategy!

Executable strategies = uniform strategies
Definition 2.6 (Uniform strategy)

Strategy s_a is uniform iff it specifies the same choices for indistinguishable situations:

- (no recall:) if $q \sim_a q'$ then $s_a(q) = s_a(q')$
- (perfect recall:) if $\lambda \approx_a \lambda'$ then $s_a(\lambda) = s_a(\lambda)$, where $\lambda \approx_a \lambda'$ iff $\lambda[i] \sim_a \lambda'[i]$ for every i.

A collective strategy is uniform iff it consists only of uniform individual strategies.
2. Reasoning about Coalitions

4. Imperfect Information

Definition 2.6 (Uniform strategy)

Strategy \(s_a \) is uniform iff it specifies the same choices for indistinguishable situations:

- (no recall:) if \(q \sim_a q' \) then \(s_a(q) = s_a(q') \)
- (perfect recall:) if \(\lambda \approx_a \lambda' \) then \(\Rightarrow s_a(\lambda) = s_a(\lambda) \), where \(\lambda \approx_a \lambda' \) iff \(\lambda[i] \sim_a \lambda'[i] \) for every \(i \).

A collective strategy is uniform iff it consists only of uniform individual strategies.
Note:
Having a successful strategy does not imply knowing that we have it!
Note:

Having a successful strategy does not imply knowing that we have it!

Knowing that a successful strategy exists does not imply knowing the strategy itself!
Levels of Strategic Ability

From now on, we restrict our discussion to uniform memoryless strategies.
Levels of Strategic Ability

From now on, we restrict our discussion to uniform memoryless strategies.

Our cases for $\langle A \rangle \Phi$ under incomplete information:

1. There is σ such that, for every execution of σ, Φ holds
Levels of Strategic Ability

From now on, we restrict our discussion to uniform memoryless strategies.

Our cases for $\langle A \rangle \Phi$ under incomplete information:

2. There is σ such that, for every execution of σ, Φ holds.

3. A know that there is σ such that, for every execution of σ, Φ holds.
Levels of Strategic Ability

From now on, we restrict our discussion to uniform memoryless strategies.

Our cases for $\langle A \rangle \Phi$ under incomplete information:

2. There is σ such that, for every execution of σ, Φ holds
3. A know that there is σ such that, for every execution of σ, Φ holds
4. There is σ such that A know that, for every execution of σ, Φ holds
Case [4]: knowing how to play
Case [4]: knowing how to play

- Single agent case: we take into account the paths starting from indistinguishable states (i.e., \(\bigcup_{q' \in \text{img}(q, \sim a)} \text{out}(q, s_A) \))
Case [4]: knowing how to play

- Single agent case: we take into account the paths starting from indistinguishable states (i.e., $\bigcup_{q' \in \text{img}(q, \sim_a)} \text{out}(q, s_A)$)

- What about coalitions?
- Question: in what sense should they know the strategy? Common knowledge (C_A), mutual knowledge (K_A), distributed knowledge (D_A)?
Given strategy σ, agents A can have:

- **Common knowledge** that σ is a winning strategy. This requires the least amount of additional communication (agents from A may agree upon a total order over their collective strategies at the beginning of the game and that they will always choose the maximal winning strategy with respect to this order).
Given strategy σ, agents A can have:

- **Common knowledge** that σ is a winning strategy. This requires the least amount of additional communication (agents from A may agree upon a total order over their collective strategies at the beginning of the game and that they will always choose the maximal winning strategy with respect to this order)

- **Mutual knowledge** that σ is a winning strategy: everybody in A knows that σ is winning
Distributed knowledge that σ is a winning strategy: if the agents share their knowledge at the current state, they can identify the strategy as winning.
Distributed knowledge that σ is a winning strategy: if the agents share their knowledge at the current state, they can identify the strategy as winning.

“The leader”: the strategy can be identified by agent $a \in A$.

Stéphane Airiau and Wojtek Jamroga · Coalitional Games
Distributed knowledge that σ is a winning strategy: if the agents share their knowledge at the current state, they can identify the strategy as winning

“The leader”: the strategy can be identified by agent $a \in A$

“Headquarters’ committee”: the strategy can be identified by subgroup $A' \subseteq A$
Distributed knowledge that \(\sigma \) is a winning strategy: if the agents share their knowledge at the current state, they can identify the strategy as winning.

- “The leader”: the strategy can be identified by agent \(a \in A \).
- “Headquarters’ committee”: the strategy can be identified by subgroup \(A' \subseteq A \).
- “Consulting company”: the strategy can be identified by some other group \(B \).
Many subtle cases...
Many subtle cases...

Solution: constructive knowledge operators
Constructive Strategic Logic (CSL)

- $\langle A \rangle \Phi$: A have a uniform memoryless strategy to enforce Φ
2. Reasoning about Coalitions

4. Imperfect Information

Constructive Strategic Logic (CSL)

- $\langle A \rangle \Phi$: A have a uniform memoryless strategy to enforce Φ
- $K_a\langle a \rangle \Phi$: a has a strategy to enforce Φ, and knows that he has one
- For groups of agents: $C_A, E_A, D_A, ...$
Constructive Strategic Logic (CSL)

- $\langle A \rangle \Phi$: A have a uniform memoryless strategy to enforce Φ
- $K_a \langle a \rangle \Phi$: a has a strategy to enforce Φ, and knows that he has one
- For groups of agents: $C_A, E_A, D_A, ...$
- $K_a \langle a \rangle \Phi$: a has a strategy to enforce Φ, and knows that this is a winning strategy
- For groups of agents: $C_A, E_A, D_A, ...$
Non-standard semantics:

- Formulae are evaluated in sets of states
- $M, Q \models \langle \langle A \rangle \rangle \Phi$: A have a single strategy to enforce Φ from all states in Q
2. Reasoning about Coalitions

Non-standard semantics:

- Formulae are evaluated in sets of states
- \(M, Q \models \langle A \rangle \Phi \): A have a single strategy to enforce \(\Phi \) from all states in \(Q \)

Additionally:

- \(out(Q, S_A) = \bigcup_{q \in Q} out(q, S_A) \)
- \(img(Q, R) = \bigcup_{q \in Q} img(q, R) \)
2. Reasoning about Coalitions

Non-standard semantics:

- Formulae are evaluated in sets of states
- \(M, Q \models \langle A \rangle \Phi \): A have a single strategy to enforce \(\Phi \) from all states in \(Q \)

Additionally:

- \(\text{out}(Q, S_A) = \bigcup_{q \in Q} \text{out}(q, S_A) \)
- \(\text{img}(Q, R) = \bigcup_{q \in Q} \text{img}(q, R) \)
- \(M, q \models \varphi \) iff \(M, \{q\} \models \varphi \)
Definition 2.7 (Semantics of CSL)

\[M, Q \models p \quad \text{iff} \quad p \in \pi(q) \quad \text{for every} \quad q \in Q; \]
Definition 2.7 (Semantics of CSL)

\[M, Q \models p \ \text{iff} \ p \in \pi(q) \ \text{for every} \ q \in Q; \]
\[M, Q \models \neg \varphi \ \text{iff not} \ M, Q \models \varphi; \]
Definition 2.7 (Semantics of CSL)

\[M, Q \models p \iff p \in \pi(q) \text{ for every } q \in Q; \]
\[M, Q \models \neg \phi \iff \text{not } M, Q \models \phi; \]
\[M, Q \models \phi \land \psi \iff M, Q \models \phi \text{ and } M, Q \models \psi; \]
Definition 2.7 (Semantics of CSL)

\[M, Q \models p \iff p \in \pi(q) \text{ for every } q \in Q; \]
\[M, Q \models \neg \varphi \iff \text{not } M, Q \models \varphi; \]
\[M, Q \models \varphi \land \psi \iff M, Q \models \varphi \text{ and } M, Q \models \psi; \]

\[M, Q \models \langle A \rangle \gamma \iff \text{there exists } S_A \text{ such that, for every } \lambda \in \text{out}(Q, S_A), \text{ we have that } M, \lambda[1] \models \varphi; \]
$M, Q \models \mathcal{K}_A \varphi$ iff $M, q \models \varphi$ for every $q \in \text{img}(Q, \sim^\mathcal{K}_A)$ (where $\mathcal{K} = C, E, D$);
\[M, Q \models \mathcal{K}_A \varphi \iff M, q \models \varphi \text{ for every } q \in \text{img}(Q, \sim^\mathcal{K}_A) \text{ (where } \mathcal{K} = C, E, D); \]

\[M, Q \models \hat{\mathcal{K}}_A \varphi \iff M, \text{img}(Q, \sim^\hat{\mathcal{K}}_A) \models \varphi \text{ (where } \hat{\mathcal{K}} = C, E, D \text{ and } \hat{\mathcal{K}}_A = C, E, D, \text{ respectively).} \]

Example: Simple Market

@ $q_1 :$

$\neg K_c \langle \langle c \rangle \rangle \diamond \text{success}$
Example: Simple Market

\[@ q_1 : \]
\[\neg K_c \langle c \rangle \Diamond \text{success} \]
\[\neg E\{1,2\} \langle c \rangle \Diamond \text{success} \]
\[\neg K_1 \langle c \rangle \Diamond \text{success} \]
\[\neg K_2 \langle c \rangle \Diamond \text{success} \]
Example: Simple Market

\[q_0 \]

\[q_1 \]

\[q_2 \]

bad-market

loss

success

subproduction

own-production

wait

s&m

oligopoly

@ \(q_1 \):

\[\neg K_c \langle c \rangle \diamond \text{success} \]

\[\neg E_{\{1,2\}} \langle c \rangle \diamond \text{success} \]

\[\neg K_1 \langle c \rangle \diamond \text{success} \]

\[\neg K_2 \langle c \rangle \diamond \text{success} \]

\[D_{\{1,2\}} \langle c \rangle \diamond \text{success} \]
Theorem 2.8 (Expressivity)

CSL is strictly more expressive than most previous proposals.
Theorem 2.8 (Expressivity)

CSL is strictly more expressive than most previous proposals.

Theorem 2.9 (Verification complexity)

The complexity of model checking CSL is minimal.
2.5 Model Checking
Model Checking Formulae of CTL and ATL

Model checking: Does φ hold in model M and state q?
Model Checking Formulae of CTL and ATL

- Model checking: Does \(\varphi \) hold in model \(M \) and state \(q \)?
- Natural for verification of existing systems; also during design (“prototyping”)
- Can be used for automated planning
2. Reasoning about Coalitions

| function \textit{plan}(\varphi). |
| Returns a subset of \(St\) for which formula \(\varphi\) holds, together with a (conditional) plan to achieve \(\varphi\). The plan is sought within the context of concurrent game structure \(S = \langle \text{Agt}, St, \Pi, \pi, o \rangle\). |

| case \(\varphi \in \Pi\) : return \(\{\langle q, - \rangle \mid \varphi \in \pi(q)\}\) |
| case \(\varphi = \neg \psi\) : \(P_1 := \text{plan}(\psi)\); return \(\{\langle q, - \rangle \mid q \notin \text{states}(P_1)\}\) |
| case \(\varphi = \psi_1 \lor \psi_2\) : \(P_1 := \text{plan}(\psi_1)\); \(P_2 := \text{plan}(\psi_2)\); return \(\{\langle q, - \rangle \mid q \in \text{states}(P_1) \cup \text{states}(P_2)\}\) |
| case \(\varphi = \langle \text{A} \rangle \bigcirc \psi\) : return \(\text{pre}(A, \text{states}(\text{plan}(\psi)))\) |
| case \(\varphi = \langle \text{A} \rangle \Box \psi\) : |
| \(P_1 := \text{plan}(\text{true})\); \(P_2 := \text{plan}(\psi)\); \(Q_3 := \text{states}(P_2)\); |
| while \(\text{states}(P_1) \not\subseteq \text{states}(P_2)\) do \(P_1 := P_2|_{\text{states}(P_1)}\); \(P_2 := \text{pre}(A, \text{states}(P_1))|_{Q_3}\) od; return \(P_2|_{\text{states}(P_1)}\) |
| case \(\varphi = \langle \text{A} \rangle \psi_1 U \psi_2\) : |
| \(P_1 := \emptyset\); \(Q_3 := \text{states}(\text{plan}(\psi_1))\); \(P_2 := \text{plan}(\text{true})|_{\text{states}(\text{plan}(\psi_2))}\); |
| while \(\text{states}(P_2) \not\subseteq \text{states}(P_1)\) do \(P_1 := P_1 \oplus P_2\); \(P_2 := \text{pre}(A, \text{states}(P_1))|_{Q_3}\) od; return \(P_1\) |
| end case |
Complexity of Model Checking ATL

Theorem (Alur, Kupferman & Henzinger 1998)

ATL model checking is \(P \)-complete, and can be done in time linear in the size of the model and the length of the formula.
Complexity of Model Checking ATL

Theorem (Alur, Kupferman & Henzinger 1998)

ATL model checking is P-complete, and can be done in time linear in the size of the model and the length of the formula.

So, let’s model-check!
Complexity od Model Checking ATL

Theorem (Alur, Kupferman & Henzinger 1998)

ATL model checking is P-complete, and can be done in time linear in the size of the model and the length of the formula.

So, let’s model-check!

Not as easy as it seems.
- Nice results: model checking ATL is tractable.
2. Reasoning about Coalitions

5. Model Checking

- **Nice results:** model checking ATL is tractable.
- **But:** the result is relative to the size of the model and the formula.
Nice results: model checking ATL is tractable.

But: the result is relative to the size of the model and the formula

Well known catch: size of models is exponential wrt a higher-level description
Nice results: model checking ATL is tractable.

But: the result is relative to the size of the model and the formula

Well known catch: size of models is exponential wrt a higher-level description

Another problem: transitions are labeled

So: the number of transitions can be exponential in the number of agents.
3 agents/attributes, 12 states, 216 transitions
Model Checking Temporal & Strategic Logics

<table>
<thead>
<tr>
<th></th>
<th>m, l</th>
<th>n, k, l</th>
<th>n_{local}, k, l</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- m, l, n, k, l, n_{local}, k, l
- CTL
- ATL
- CSL

Clarke, Emerson & Sistla (1986).
Jamroga & Dix (2007).
Model Checking Temporal & Strategic Logics

<table>
<thead>
<tr>
<th>Logic</th>
<th>m, l</th>
<th>n, k, l</th>
<th>n_{local}, k, l</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Checking Temporal & Strategic Logics

<table>
<thead>
<tr>
<th>Logic</th>
<th>m, l</th>
<th>n, k, l</th>
<th>n_{local}, k, l</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>$P [1]$</td>
<td>$P [1]$</td>
<td>$\text{PSPACE }[2]$</td>
</tr>
<tr>
<td>ATL</td>
<td>$P [3]$</td>
<td>$\Delta^P_3 [5,6]$</td>
<td>$\text{EXPTIME }[8,9]$</td>
</tr>
<tr>
<td>CSL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Reasoning about Coalitions

5. Model Checking

Model Checking Temporal & Strategic Logics

<table>
<thead>
<tr>
<th></th>
<th>m, l</th>
<th>n, k, l</th>
<th>n_{local}, k, l</th>
</tr>
</thead>
</table>

Main message:

- Complexity is very sensitive to the context!
Main message:

- Complexity is very sensitive to the context!
- In particular, the way we define the input, and measure its size, is crucial.
Even if model checking appears very easy, it can be very hard.
Even if model checking appears very easy, it can be very hard.

Still, people do automatic model checking!
Even if model checking appears very easy, it can be very hard.

Still, people do automatic model checking!

- LTL: SPIN
Even if model checking appears very easy, it can be very hard.

Still, people do automatic model checking!

- LTL: SPIN
- CTL/ATL: MOCHA, MCMAS, VeriCS
Even if model checking appears very easy, it can be very hard.

Still, people do automatic model checking!

- LTL: SPIN
- CTL/ATL: MOCHA, MCMAS, VeriCS

Even if model checking is theoretically hard, it can be feasible in practice.
2.6 References
2. Reasoning about Coalitions

Alternating-time Temporal Logic.

Temporal and modal logic.

Constructive knowledge: What agents can achieve under incomplete information.