Kinetic Bounding Volume Hierarchies for Deformable Objects

René Weller, TU Clausthal

We present novel algorithms for updating bounding volume hierarchies of objects undergoing arbitrary deformations. Therefore, we introduce two new data structures, the kinetic AABB tree and the kinetic BoxTree. The event-based approach of the kinetic data structures framework enables us to show that our algorithms are optimal in the number of updates. Moreover, we show a lower bound for the total number of BV updates, which is independent of the number of frames. We used our kinetic bounding volume hierarchies for collision detection and performed a comparison with the classical bottom-up update method. The results show that our algorithms perform up to ten times faster in practically relevant scenarios.

Donnerstag den 8. Juni 2006
15.00 Uhr in Raum 106