Model Checking Rational Play

Wojciech Jamroga and Nils Bulling
Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany
Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Contact: wjamroga@in.tu-clausthal.de
URL: http://www.in.tu-clausthal.de/forschung/technical-reports/
ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Kai Hormann (Computer Graphics)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)
Model Checking Rational Play

Wojciech Jamroga and Nils Bulling

Department of Informatics, Clausthal University of Technology, Germany
{wjamroga,bulling}@in.tu-clausthal.de

Abstract

We show that the problem of model checking “ATL with Plausibility” is \(\Delta^P_3\)-complete. We consider two variants of the logic: one with abstract terms describing plausibility sets, and another one where plausibility assumptions are imposed through formulae of ATL\(^I\) \cite{19}. In both cases, the complexity results are the same.

1 Introduction

Alternating-time temporal logic (ATL) \cite{1,2} is a temporal logic that incorporates some basic game-theoretical notions. In \cite{15}, we extended ATL with a notion of plausibility, which can be used to model and reason about what agents can plausibly achieve. Our intuition was to use game-theoretical solution concepts (like Nash equilibrium, Pareto optimality, dominant strategies etc.) to define what it means to play rationally, and then to assume it plausible that agents behave in a rational way. Technically, some strategies (or rather strategy profiles) were assumed plausible in a given model, and one could reason about what can happen if only the plausible profiles are used.

The formulation of alternating-time temporal logic with plausibility (ATLP) from \cite{15} was rather abstract, with unstructured terms used to address various rationality assumptions, and their denotation “hard-wired” in the model. In \cite{16}, we proposed to refine the language of terms so that it would allow to specify sets of rational strategy profiles in the object language. The idea was to build the terms on formulae of ATL\(^I\) (ATL with intentions, \cite{19}), as these can be used to describe sets of strategies and strategy profiles.

This technical report complements \cite{16} by giving a more detailed account of the model checking complexity for the resulting logic.
2 Preliminaries

In this section, we summarize some modal logics for reasoning about agents in game-like scenarios: first, the basic logic of ATL [1, 2]; then, its two extensions ATLP [15] and ATLI [19].

2.1 Alternating-time Temporal Logic

Alternating-time temporal logic (ATL) [1, 2] enables reasoning about temporal properties and strategic abilities of agents. Formally, the language of ATL is given as follows.

Definition 1 (L_{ATL}[1, 2]) Let $\mathcal{A}_\text{gt} = \{1, \ldots, k\}$ be a nonempty finite set of all agents, and Π be a set of propositions (with typical element p). We will use symbol a to denote a typical agent, and A to denote a typical group of agents from \mathcal{A}_gt. The logic $L_{ATL}(\mathcal{A}_\text{gt}, \Pi)$ is defined by the following grammar:

$$\varphi ::= p | \neg \varphi | \varphi \land \varphi | \langle \langle A \rangle \rangle h \varphi | \langle \langle A \rangle \rangle \Box \varphi | \langle \langle A \rangle \rangle \varphi U \varphi.$$

Informally, $\langle \langle A \rangle \rangle \varphi$ says that agents A have a collective strategy to enforce φ.

ATL formulae include the usual temporal operators: h ("in the next state"), \Box ("always from now on") and U (strict "until"). Additionally, \Diamond ("now or sometime in the future") can be defined as $\Diamond \varphi \equiv \top U \varphi$. It should be noted that the path quantifiers A, E of computation tree logic CTL [8] can be expressed in ATL with $\langle \langle \emptyset \rangle \rangle, \langle \langle \mathcal{A}_\text{gt} \rangle \rangle$ respectively. The semantics of ATL is defined in so-called concurrent game structures.

Definition 2 (CGS [2]) A concurrent game structure (CGS) is a tuple: $M = (\mathcal{A}_\text{gt}, S, \Pi, \pi, \text{Act}, d, o)$, consisting of: a set $\mathcal{A}_\text{gt} = \{1, \ldots, k\}$ of agents; a nonempty set S of states; set Π of atomic propositions; valuation of propositions $\pi : S \to P(\Pi)$; set Act of actions. Function $d : \mathcal{A}_\text{gt} \times S \to P(\text{Act})$ indicates the actions available to agent $a \in \mathcal{A}_\text{gt}$ in state $q \in S$; it is required that $d(a, q)$ is nonempty for every a, q. We will often write $d_a(q)$ instead of $d(a, q)$, and use $d(q)$ to denote the set $d_1(q) \times \cdots \times d_k(q)$ of action profiles in state q. Finally, o is a transition function which maps each state $q \in S$ and action profile $\alpha = (\alpha_1, \ldots, \alpha_k) \in d(q)$ to another state $q' = o(q, \alpha)$.

A computation or path $\lambda = q_0q_1 \cdots \in S^+$ is an infinite sequence of states such that there is a transition between each q_i, q_{i+1}. We define $\lambda[i] = q_i$ to denote the i-th state of λ. Λ_M denotes all paths in M. The set of all paths starting in q is given by $\Lambda_M(q)$.
Definition 3 (Strategy, outcome [1][2]) A (memoryless) strategy of agent \(a \) is a function \(s_a : St \rightarrow Act \) such that \(s_a(q) \in d_a(q) \).\footnote{This is a deviation from the original semantics of ATL [1][2], where strategies assign agents’ choices to sequences of states (which suggests that agents can recall the whole history of each game). While the choice between the two types of strategies affects the semantics of most ATL extensions, both yield equivalent semantics for “pure” ATL [23].} We denote the set of such functions by \(\Sigma_a \). A collective strategy \(s_A \) for team \(A \subseteq \text{agt} \) specifies an individual strategy for each agent in \(A \); the set of \(A \)'s collective strategies is given by \(\Sigma_A = \prod_{a \in A} \Sigma_a \). The set of all strategy profiles is given by \(\Sigma = \Sigma_\text{agt} \).

The outcome of strategy \(s_A \) in state \(q \) is defined as the set of all paths that may result from executing \(s_A \) from state \(q \) on: \(\text{out}(q, s_A) = \{ \lambda \in \Lambda_M | q_i \in \mathbb{N}_0 \exists \bar{\alpha} = (\alpha_1, \ldots, \alpha_k) \in d(\lambda[i]) \forall a \in A (\alpha_a = s^a_A(\lambda[i]) \land a(\lambda[i], \bar{\alpha}) = \lambda[i + 1] \} \), where \(s^a_A \) denotes agent \(a \)'s part of the collective strategy \(s_A \).

The semantics of ATL is given by the following clauses:

\[
M, q \models p \iff p \in \pi(q)
\]

\[
M, q \models \neg \varphi \iff M, q \not\models \varphi
\]

\[
M, q \models \varphi \land \psi \iff M, q \models \varphi \text{ and } M, q \models \psi
\]

\[
M, q \models \langle A \rangle \bigcirc \varphi \iff \text{there is } s_A \in \Sigma_A \text{ such that } M, \lambda[1] \models \varphi \text{ for all } \lambda \in \text{out}(q, s_A)
\]

\[
M, q \models \langle A \rangle \bigBox \varphi \iff \text{there is } s_A \in \Sigma_A \text{ such that } M, \lambda[i] \models \varphi \text{ for all } \lambda \in \text{out}(q, s_A) \text{ and } i \in \mathbb{N}_0
\]

\[
M, q \models \langle A \rangle \varphi \bigcup \psi \iff \text{there is } s_A \in \Sigma_A \text{ such that, for all } \lambda \in \text{out}(q, s_A), \text{ there is } i \in \mathbb{N}_0 \text{ with } M, \lambda[i] \models \psi, \text{ and } M, \lambda[j] \models \varphi \text{ for all } 0 \leq j < i
\]

2.2 ATL with Plausibility: Reasoning about Rational Agents

 Agents usually have limited ability to predict the future. However, some lines of action seem often more sensible or realistic than others. Having defined a rationality criterion, we obtain means to determine the most plausible plays, and compute their outcome. In [15], we proposed an extension of ATL for reasoning about rational agents, which had in turn been inspired by the work by Van Otterloo and colleagues [31][29][30] and the research on social laws [24][22][27]. We called the logic ATLP, i.e., “ATL with plausibility”.

Definition 4 (\(L_{\text{ATLP}} \) [15]) Let \(\text{agt}, \Pi \) be as before, and \(\Omega \) be a set of plausibility terms (with typical element \(\omega \)). The language \(L_{\text{ATLP}}(\text{agt}, \Pi, \Omega) \) is defined recursively as:

\[
\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle A \rangle \bigcirc \varphi \mid \langle A \rangle \bigBox \varphi \mid \langle A \rangle \varphi \bigcup \psi \mid \Pi \varphi \mid \text{Ph} \varphi \mid (\text{set-pl} \omega)\varphi
\]
\textbf{Preliminaries}

Pl restricts the considered strategy profiles to ones that are \textit{plausible} in the given model. Ph disregards plausibility assumptions, and refers to all \textit{physically} available strategies. \textbf{(set-pl ω)} allows to define (or redefine) the set of plausible strategy profiles to the ones described by plausibility term ω (in this sense, it implements revision of plausibility). With ATLP, we can for example say that Pl $(\emptyset) \Box \text{closed}$ and Ph $(\text{guard}) \Diamond \neg \text{closed}$: “it is plausible that the emergency door will always remain closed, but the guard retains the physical ability to open them”; or \textbf{(set-pl ω_{NE})} $\text{Pl} \langle \emptyset \rangle \Diamond \neg \text{jail}$: “suppose that only playing Nash equilibria is rational; then, agent a can plausibly reach a state where he is out of prison”. To define the semantics of ATLP, we extend CGS to \textit{concurrent game structures with plausibility (CGSP)}. Apart from an actual plausibility set Υ, a CGSP specifies a \textit{plausibility mapping} $\llbracket \cdot \rrbracket: St \rightarrow (\Omega \rightarrow \mathcal{P}(\Sigma))$ that maps each term $\omega \in \Omega$ to a set of strategy profiles, depending on the current state.

\textbf{Definition 5 (CGSP [15])} A concurrent game structure with plausibility (CGSP) is given by a tuple

$$M = \langle \text{Agt}, St, \Pi, \pi, \text{Act}, d, o, \Upsilon, \llbracket \cdot \rrbracket \rangle$$

where $\langle \text{Agt}, St, \Pi, \pi, \text{Act}, d, o \rangle$ is a CGS, $\Upsilon \subseteq \Sigma$ is a set of plausible strategy profiles; Ω is a set of of plausibility terms, and $\llbracket \cdot \rrbracket$ is a plausibility mapping.

When talking about the outcome of rational/plausible play (e.g., with formula $\text{Pl} \langle \langle A \rangle \rangle \gamma$), the strategy profiles that can be used \textit{by all the agents} are restricted to the ones from Υ. Thus, coalition A can only choose strategies that are \textit{substrategies} of plausible strategy profiles. Moreover, the agents in $\text{Agt} \setminus A$ can only respond in a way that yields a plausible strategy profile.

\textbf{Definition 6 (Substrategy, outcome [15])} Let $A \subseteq B \subseteq \text{Agt}$, and let s_B be a collective strategy for B. We use $s_B[A]$ to denote the substrategy of s_B for agents A, i.e., strategy t_A such that $t_A^a = s_B^a$ for every $a \in A$. Additionally, for a set of strategy profiles P, $P(s_A)$ denotes all strategy profiles from P that contain s_A as substrategy (i.e., $P(s_A) = \{s' \in P \mid s'[A] = s_A\}$).

Let M be a CGSP, $A \subseteq \text{Agt}$ be a set of agents, $q \in St$ be a state, $s_A \in \Sigma_A$ be a collective strategy of A, and $P \subseteq \Sigma$ be a set of strategy profiles. The set $\text{out}(q, s_A, P)$ contains all paths which may result from agents A executing s_A, when only strategy profiles from P can be played. Formally: $\text{out}(q, s_A, P) = \{\lambda \in \Lambda_M(q) \mid \exists s \in P(s_A) \forall i (\lambda[i+1] = o(\lambda[i], z(\lambda[i])))\}$. Furthermore, $\Sigma_A(P)$ denotes all A’s strategies consistent with P, i.e., $\Sigma_A(P) = \{s_A \in \Sigma_A \mid \exists t \in P \ s_A = t[A]\}$.

Let $P \subseteq \Sigma_{\text{Agt}}$ be a set of strategy profiles. The semantics of ATLP is given by the satisfaction relation \models_P defined as follows:

$$M, q \models_P p \text{ iff } p \in \pi(q)$$
There is a language consisting of strategic terms interpreted as strategies according to function $a \mapsto \|a\|$ such that $\|a\| \in \Sigma_a$ for $\sigma_a \in \Str_a$. The set of paths consistent with Σ is defined as follows:

$$\theta ::= p | \neg \theta | \theta \land \theta | \langle A \rangle \circ \theta | \langle A \rangle \Box \theta | \langle A \rangle \theta U \theta | (\Str_a \sigma_a) \theta.$$
all agents' intentions is defined as $\Lambda^T = \{ \lambda \in \Lambda_M \mid \forall i \exists \alpha \in d(\lambda[i]) (\alpha(\lambda[i], \alpha) = \lambda[i + 1] \land \forall a \in \text{agt} \lambda[i]I_a(\alpha)) \}$. We say that strategy s_A is consistent with A's intentions if $qI_a s_A[a](q)$ for all $q \in St, a \in A$. The intention-consistent outcome set is defined as: $\text{out}^T(q, s_A) = \text{out}(q, s_A) \cap \Lambda^T$. The semantics of strategic operators in ATLI is given as follows:

- $M, q \models (\lnot \theta) \iff \exists \alpha \in d(q) \exists \lambda \in \Lambda_M \forall i \exists \alpha \in d(\lambda[i]) (\alpha(\lambda[i], \alpha) = \lambda[i + 1] \land (\forall a \in \text{agt} \lambda[i]I_a(\alpha) = \lambda[i + 1] \land \forall a \in \text{agt} \lambda[i]I_a(\alpha)))$.
- $M, q \models \theta \land K \theta'$. Analogous.
- $M, q \models (\text{str}_a \sigma) \theta \iff \text{revise}(M, a, \|\sigma\|), q \models \theta$.

Function $\text{revise}(M, a, s_A)$ updates model M by setting a's intention relation to $I^\prime_a = \{q, s_A(q) \mid q \in St\}$, so that s_A and I_a represent the same mapping in the resulting model. Note that a “pure” CGS M can be seen as a CGS with the “full” intention relation $\Gamma^\prime = \{q, a, \alpha \mid q \in St, a \in \text{agt}, \alpha \in d_a(q)\}$.

Additionally, for $A = \{a_1, ..., a_r\}$ and $\sigma_A = \langle \sigma_1, ..., \sigma_r \rangle$, we define: $\langle \text{str}_a \sigma \rangle \phi \equiv (\text{str}_a \sigma_1)...(\text{str}_a \sigma_r)\phi$.

2.4 ATLI-Based Plausibility Terms

Ideally, one would like to have a flexible language of terms that would allow to specify any sensible rationality assumption, and then impose it on the system. Our idea is to use ATLI formulae θ to specify sets of plausible strategy profiles, with the presumed meaning that T collects exactly the profiles for which θ holds. Then, we can embed such ATLI-based plausibility specifications in formulae of ATLP in order to reason about rational agents. We call the resulting language $\text{ATLP}^{\text{ATLI}}$.

Definition 8 ($\mathcal{L}_{\text{ATLP}^{\text{ATLI}}}$) Let $\Omega^\prime = \{((\sigma, \theta) \mid \theta \in \mathcal{L}_{\text{ATLP}}(\text{agt}, \Pi, \{\sigma[1], ..., \sigma[k]\})\}$. That is, Ω^\prime collects terms of the form (σ, θ), where θ is an ATLI formula including only references to individual agents’ parts of the strategy profile σ. The language of $\text{ATLP}^{\text{ATLI}}$ is defined as $\mathcal{L}_{\text{ATLP}}(\text{agt}, \Pi, \Omega^\prime)$.

The idea behind terms of this form is simple. We have an ATLI formula θ, parameterized with a variable σ that ranges over the set of strategy profiles Σ. Now, we want (σ, θ) to denote exactly the set of profiles from Σ, for which formula θ holds. However – as σ denotes a strategy profile, and ATLI allows only to refer to strategies of individual agents – we need a way of addressing substrategies of σ in θ. This can be done by using ATLI terms $\sigma[i]$, which will be interpreted as the i’s substrategy in σ. Below, we define the concept formally.

Definition 9 (CGSP for $\mathcal{L}_{\text{ATLP}^{\text{ATLI}}}$) Let $\langle \text{agt}, St, \Pi, \pi, \text{Act}, d, o \rangle$ be a CGS, and let $\Upsilon \subseteq \Sigma$ be a set of plausible strategy profiles. $M = \langle \text{agt}, St, \Pi, \pi, \text{Act}, d, o, \Upsilon, \Omega^\prime, \{[\cdot]\} \rangle$.
is a CGS with plausibility iff the denotation $[\cdot]$ of terms from Ω^* is defined as follows.

First, we define a family of ATLI models $M^s = \langle \text{Agt}, \text{St}, \Pi, \pi, \text{Act}, d, o, T^0, \text{Str}, \|\| \rangle$, one for each strategy profile $s \in \Sigma$, with $\text{Str}_a = \{\sigma[a]\}$, and $\|\sigma[a]\| = s[a]$. Then, we define the plausibility mapping as:

$$[\sigma, \theta]_q = \{s \in \Sigma \mid M^s, q \models \theta\}.$$

For example, we may assume that rational agents do not grant the other agents with too much control over their lives:

$$(\sigma \cdot \bigwedge_{a \in \text{Agt}} (\text{str}_a \sigma[a]) \neg \langle \langle \text{Agt} \setminus \{a\} \rangle \rangle \diamond \text{dead}_a).$$

Note that games defined by CGS are, in general, not determined, so the above specification does not guarantee that each rational agent can efficiently protect his life. It only requires that he should behave cautiously so that his opponents do not have complete power to kill him.

3 Model Checking ATLP and ATLP^{[ATLI]}

In this section we show that model checking ATLP is Δ^P_3-complete, which seems in line with existing results on the complexity of solving games. It is well known that determining the existence of a solution concept instance with certain natural properties (e.g., a Nash equilibrium with expected utility of at least k, or a Pareto-optimal Nash equilibrium) is NP-hard even for normal form (i.e., one-step) games in the setting of mixed strategies [10, 7]. Similar results are known for extensive turn-based games with imperfect information and recall [9, 20, 5]. Formally, mixed strategies and imperfect information are absent in ATLP. However, the framework turns out to be quite powerful in terms of expressiveness. In particular, imperfect information strategies (sometimes called uniform strategies) can be characterized in ATLP for a relevant subclass of models, and checking strategic properties of systems in which all agents must play uniform strategies is Δ^P_3-complete – which renders ATLP model checking also Δ^P_3-complete. This coincides with another result from game theory: if both players in a 2-player imperfect information game have imperfect recall, and chance moves are allowed, then the problem of finding a max-min pure strategy is Σ^P_2-complete [20].

We mainly consider checking formulae of ATLP against “pure” concurrent game structures (i.e., we assume that plausibility assumptions will be specified explicitly in the formula), although we briefly show, too, that the

3 Note that strategic operators can be nested in an ATLP formula, thus specifying a sequence of games, with the outcome of each game depending on the previous ones – and solving such games requires adaptive calls to a Σ^P_2 oracle.
Model Checking ATLP and $\text{ATLP}_{\text{ATLI}}$

function $mcheck(M, q, \varphi, \theta_1, q_1, \theta_2, q_2)$;

Returns "true" iff φ holds in M, q. The current plausibility assumptions are specified by the truth of the ATLI formula θ_1 at state q_1. The most recent plausibility specification (not necessarily incorporated into the definition of the current plausibility set Υ yet) corresponds to the truth of θ_2 at q_2.

cases $\varphi \equiv p_1, \varphi \equiv \neg \psi, \varphi \equiv \psi_1 \land \psi_2$: proceed as usual;
case $\varphi \equiv (\text{set-pl} \sigma \theta') \psi$: return($mcheck(M, q, \psi, \theta_1, q_1, \theta_2, q_2)$);
case $\varphi \equiv \text{Pl} \psi$: return($mcheck(M, q, \psi, \theta_1, q_1, \theta_2, q_2)$);
case $\varphi \equiv \text{Ph} \psi$: return($mcheck(M, q, \psi, \top, q_1, \theta_2, q_2)$);
case $\varphi \equiv \langle \langle A \rangle \rangle g \psi$, where ψ includes some $\langle \langle B \rangle \rangle$: Label all $q' \in \text{St}$, in which $mcheck(M, q, \psi, \theta_1, q_1, \theta_2, q_2)$ returns "true", with a new proposition yes. Return $mcheck(M, q, \langle \langle A \rangle \rangle \bigcirc \text{yes}, \theta_1, q_1, \theta_2, q_2)$;
case $\varphi \equiv \langle \langle A \rangle \rangle \bigcirc \psi$, where ψ includes no $\langle \langle B \rangle \rangle$: Remove all operators Pl, Ph, (set-pl ·) from ψ (they are irrelevant, as no cooperation modality comes further), yielding ψ'. Return solve($M, q, \langle \langle A \rangle \rangle \bigcirc \psi', \theta_1, q_1$);
cases $\langle \langle A \rangle \rangle \Box \psi$ and $\langle \langle A \rangle \rangle \psi_1 \bigcup \psi_2$: analogously;
end case

Figure 1: Model checking ATLP: main function

results carry over to model checking against CGS with plausibility. The size of the input is measured with the number of transitions in the model (m) and the length of the formula (l). Note that the problem of checking ATLP with respect to the size of the whole CGSP (including the plausibility set Υ), is trivially linear in the size of the model – but the model size is exponential with respect to the number of states and transitions.

3.1 Model Checking $\text{ATLP}^{\text{ATLI}}$ is in Δ^P_3

First, we consider the upper bound for complexity of model checking ATLP with plausibility terms expressed in ATLI. A detailed algorithm for model checking $\text{ATLP}^{\text{ATLI}}$ formulae against concurrent game structures is presented in Figures 1 and 2. Apart from the model, the state, and the formula to be checked, the input includes two plausibility specifications (each represented by an ATLI formula and a state at which it should be evaluated). The first specification describes the current set of plausible strategy profiles Υ. The latter is the argument of the most recent (set-pl ·) operation, not necessarily incorporated into the definition of Υ yet – unless the Pl operator has been used since. As both CTL and ATLI model checking is linear in the number of transitions in the model and the length of the formula [6, 19], we get the following.

Proposition 1 $M, q \models \varphi$ iff $mcheck(M, q, \varphi, \top, q, \top, q)$. The algorithm runs in
function solve(M, q, φ, θ, q');
Returns "true" iff φ holds in M, q under plausibility assumptions specified by the truth of θ at q'. We assume that φ ≡ ⟨⟨A⟩⟩□ψ, where ψ is a propositional formula, i.e., it includes no ⟨⟨B⟩⟩, Pl, Ph, (set-pl ·).

- Label all q' ∈ St, in which ψ holds, with a new proposition yes;
- Guess a strategy profile s;
- if plausiblestrat(s, M, q', θ) then return(not beatable(s[A], M, q, ⟨⟨A⟩⟩ □ yes));
 else return(false);

function beatable(sA, M, q, ⟨⟨A⟩⟩γ, q', θ);
Returns "true" iff the opponents can beat sA so that it does not enforce γ in M, q under plausibility assumptions specified by the ATLI formula θ at q'. The path formula γ is of the form ○ψ, □ψ, ψUψ' with propositional ψ, ψ'.

- Guess a strategy profile t;
- if plausiblestrat(t, M, q', θ) and t[A] = sA then
 - M' := “trim” M, removing all transitions that cannot occur when t is executed;
 - return(mcheckCTL(M', q, Aγ));
 else return(false);

function plausiblestrat(s, M, q, θ);
Checks if strategy profile s satisfies formula θ in M, q.

- return(mcheckATLI(M', q, θ)); // For M', cf. Definition [9]

Figure 2: Model checking ATLP: guessing strategies and counterstrategies
time Δ₃^P with respect to the number of transitions in the model and the length of the formula.

3.2 Model Checking ATLP with Arbitrary Plausibility Terms

The algorithm in Figures 1 and 2 uses the ATLI-based plausibility terms presented in Section 2.4. In the general case, we can think of any arbitrary implementation of terms in Ω. As long as plausiblestrat(s, M, q, θ) can be computed in polynomial time, it does not affect the overall complexity of mcheck. In fact, it is enough to require that plausiblestrat(s, M, q, θ) can be computed in nondeterministic polynomial time, as the witness for plausiblestrat can be guessed together with the strategy profile s in function solve, and with the strategy profile t in function beatable, respectively.

Proposition 2 If the verification of plausibility (plausiblestrat) is in NP, then the model checking algorithm (mcheck) is in Δ₃^P with respect to m, l.
Model Checking ATLP and $\text{ATLP}^{\text{ATLI}}$

Note that, if a list (or several alternative lists) of plausible strategy profiles is given explicitly in the model (via the plausibility set Υ and/or the denotations of abstract plausibility terms ω from Section 2.2), then the problem of guessing an appropriate strategy from such a list is in NP (memoryless strategies have polynomial size with respect to m). As a consequence, we have the following:

Corollary 3 Model checking ATLP (with both abstract and ATLI-based plausibility terms) against CGSP is in Δ^P_3 with respect to m,l.

3.3 Model Checking ATLP is Δ^P_3-hard

We prove the Δ^P_3-hardness through a reduction of SNSAT_2, the typical Δ^P_3-complete variant of the Boolean satisfiability problem. The reduction follows in two steps. First, we define a modification of ATL^{ir} [23], in which all agents are required to play only uniform strategies. We call it “uniform ATL^{ir}” ($\text{ATL}^{\text{u} \text{ir}}$ in short), and show a polynomial reduction of SNSAT_2 to $\text{ATL}^{\text{u} \text{ir}}$ model checking. Then, we point out how each formula and model of $\text{ATL}^{\text{u} \text{ir}}$ can be equivalently translated (in polynomial time) to a CGS and a formula of $\text{ATLP}^{\text{ATLI}}$, thus yielding a polynomial reduction of SNSAT_2 to $\text{ATLP}^{\text{ATLI}}$. Again, we consider two cases: ATLP with arbitrary plausibility terms, and ATLP with terms defined through formulae of ATLI. The first part of the reduction (from SNSAT_2 to model checking $\text{ATL}^{\text{u} \text{ir}}$) is the same in both cases, but the second part (from model checking $\text{ATL}^{\text{u} \text{ir}}$ to ATLP) proceeds differently, and we discuss both variants accordingly.

Readers interested in additional technical details are referred to [17, 18, 14, 11], where important parts of our construction are described.

3.3.1 Uniform ATL^{ir}

First, we introduce the logic of “uniform ATL^{ir}” ($\text{ATL}^{\text{u} \text{ir}}$). The idea is based on Schobbens’s ATL^{ir} [23], i.e., ATL for agents with imperfect information and imperfect recall. There, it was assumed that the coalition A in formula $\langle \langle A \rangle \rangle^{\text{ir}} \phi$ can only use strategies that assign same choices in indistinguishable states (so called uniform strategies). Then, the outcome of every strategy of A was evaluated against every possible behavior of the remaining agents $\text{Agt} \setminus A$ (with no additional assumption with respect to that behavior).

In $\text{ATL}^{\text{u} \text{ir}}$, we assume that the opponents ($\text{Agt} \setminus A$) are also required to respond with a uniform memoryless strategy. The syntax of $\text{ATL}^{\text{u} \text{ir}}$ is the same as that of ATL, only cooperation modalities are annotated with additional tags ir and u to indicate the imperfect information and recall, and uniformity of all agents’ strategies.
The semantics of ATL\(_r\) can be defined as follows. First, we define models as concurrent epistemic game structures (CEGS), i.e. CEGS with epistemic relations \(\sim_a \subseteq S_t \times S_t\), one per agent. (The intended meaning of \(q \sim_a q'\) is that agent \(a\) cannot distinguish between states \(q\) and \(q'\).) Additionally, we require that agents have the same options in indistinguishable states, i.e., that \(q \sim_a q'\) implies \(d_a(q) = d_a(q')\). A (memoryless) strategy \(s_A\) is uniform if \(q \sim_a q'\) implies \(s_A^q(q) = s_A^q(q')\) for all \(q, q' \in S_t, a \in A\). To simplify the notation, we define \([q]_A = \{q' \mid q \sim_a q'\}\) to be the class of states indistinguishable from \(q\) for some member of the group \(A\); finally, \(\text{out}(Q, s_A) = \bigcup_{q \in Q} \text{out}(q, s_A)\) collects all the execution paths of strategy \(s_A\) from states in set \(Q\).

Now, the semantics is given by the clauses below:

\[
M, q \models p \quad \text{iff} \quad p \in \pi(q)
\]

\[
M, q \models \neg \varphi \quad \text{iff} \quad M, q \not \models \varphi
\]

\[
M, q \models \varphi \land \psi \quad \text{iff} \quad M, q \models \varphi \quad \text{and} \quad M, q \models \psi
\]

\[
M, q \models \langle \langle A \rangle \rangle^p \Box \varphi \quad \text{iff there is a uniform strategy} \ s_A \ \text{such that, for every uniform counterstrategy} \ t_{\lambda}^A \ \text{and} \ \lambda \in \text{out}([q]_A, \langle s_A, t_{\lambda}^A \rangle), \ \text{we have} \ M, \lambda[1] \models \varphi;
\]

\[
M, q \models \langle \langle A \rangle \rangle^p \diamond \varphi \quad \text{iff there is a uniform strategy} \ s_A \ \text{such that, for every uniform counterstrategy} \ t_{\lambda}^A \ \text{and} \ \lambda \in \text{out}([q]_A, \langle s_A, t_{\lambda}^A \rangle), \ \text{we have} \ M, \lambda[i] \models \varphi \ \text{for all} \ i = 0, 1, \ldots;
\]

\[
M, q \models \langle \langle A \rangle \rangle^p \forall \varphi \quad \text{iff there is a uniform strategy} \ s_A \ \text{such that, for every uniform counterstrategy} \ t_{\lambda}^A \ \text{and} \ \lambda \in \text{out}([q]_A, \langle s_A, t_{\lambda}^A \rangle), \ \text{there is} \ i \in \mathbb{N}_0 \ \text{with} \ M, \lambda[i] \models \varphi \ \text{and} \ M, \lambda[j] \models \varphi \ \text{for all} \ 0 \leq j < i.
\]

3.3.2 Reduction of SNSAT\(_2\) to Model Checking of ATL\(_r\)\(^4\)

We recall the definition of SNSAT\(_2\) after \[21\].

Definition 10 (SNSAT\(_2\))

Input: \(p\) sets of propositional variables \(X_r = \{x_{1,r}, \ldots, x_{k_r}\}\), \(p\) sets of propositional variables \(Y_r = \{y_{1,r}, \ldots, y_{k_r}\}\), \(p\) propositional variables \(z_r\), and \(p\) Boolean formulae \(\varphi_r\) in positive normal form (i.e., negation is allowed only on the level of literals). Each \(\varphi_r\) involves only variables in \(X_r \cup Y_r \cup \{z_1, \ldots, z_{r-1}\}\), with the following requirement: \(z_r \equiv \exists X_r \forall Y_r \varphi_r(z_1, \ldots, z_{r-1}, X_r, Y_r)\).

Output: The value of \(z_p\).

Note that every non-literal formula \(\varphi_r\) can be written as \(\chi_1 \ op \ \chi_2\) with \(\op \in \{\land, \lor\}\). Recursively, \(\chi_1\) can be written as \(\chi_{i1} \ op_h \ \chi_{i2}\) and \(\chi_{ij}\) as \(\chi_{ij1} \ op_{ij} \ \chi_{ij2}\) etc.

\(^4\) Note that the definition of concurrent game structures, that we use after \[2\], implies that CEGS are deterministic, so there is in fact exactly one such path \(\lambda\).
Our reduction of SNSAT_2 is an extension of the reduction of SNSAT presented in [17, 18]. That is, we construct the CEGS M_r corresponding to z_r with two players: verifier v and refuter r. The CEGS is turn-based, that is, every state is "governed" by a single player who determines the next transition. Each subformula χ_i of φ_r has a corresponding state q_i in M_r. If the outermost logical connective of φ_r is \land, the refuter decides at q_0 which subformula χ_i of φ_r is to be satisfied, by proceeding to the "subformula" state q_i corresponding to χ_i. If the outermost connective is \lor, the verifier decides which subformula χ_i of φ_r will be attempted at q_0. This procedure is repeated until all subformulae are single literals. The states corresponding to literals are called "proposition" states.

The difference from the construction from [17, 18] is that formulae are in positive normal form (rather than CNF) and that we have two kinds of "proposition" states now: $q_{i_1...i_l}$ refers to a literal consisting of some $x \in X_r$ and is governed by v; $q_{i_1...i_l}$ refers to some $y \in Y_r$ and will be governed by r. Now, the values of the underlying propositional variables x, y are declared at the "propositional" states, and the outcome is computed. That is, if v executes \top for a positive literal, i.e. $\chi_{i_1...i_l} = x_i$ (or \bot for $\chi_{i_1...i_l} = \neg x_i$) at $q_{i_1...i_l}$, then the system proceeds to the "winning" state q_\top; otherwise, the system goes to the "sink" state q_\bot. For states $\bar{q}_{i_1...i_l}$ the procedure is analogous.
els corresponding to subsequent z_r are nested like in Figure 3. Proposition” states referring to the same variable x are indistinguishable for v (so that he has to declare the same value of x in all of them), and the states referring to the same y are indistinguishable for r. A sole ATL^u_r proposition yes holds only in the “winning” state q_\top. As in [17, 18], we have the following result which concludes the reduction.

Proposition 4 The above construction depicts a polynomial reduction of SNSAT_2 to model checking ATL^u_r in the following sense. Let

$\Phi_1 \equiv \langle \langle v \rangle \rangle^u_r (\neg \text{neg}) U \text{yes}$, and $\Phi_r \equiv \langle \langle v \rangle \rangle^u_r (\neg \text{neg}) U (\text{yes} \lor (\neg \langle \langle \emptyset \rangle \rangle^u_r \bigcirc \neg \Phi_{r-1}))$ for $r = 2, \ldots, p$.

Then, we have z_p iff $M_p, q_0 \models_{\mathsf{ATL}^u_r} \Phi_p$.

Note that there is a straightforward Δ^P_3 algorithm that model-checks formulae of ATL^u_r: when checking $\langle \langle A \rangle \rangle^u_r T \varphi$ in M, q, it first recursively checks φ (bottom-up), and labels the states where φ held with a special proposition yes. Then, the algorithm guesses a uniform strategy s_A and calls an oracle that guesses a uniform counterstrategy t_A of s_A, and calls a CTL model checker to check formula $A T \text{yes}$ in state q of the resulting model. This gives us the following result.

Proposition 5 Model checking ATL^u_r is Δ^P_3-complete with respect to the number of transitions in the model and the length of the formula. It is Δ^P_3-complete even for turn-based CEGS with at most two agents.

3.3.3 From ATL^u_r to ATLP with Arbitrary Plausibility Terms

Now we show how ATL^u_r model checking can be reduced to model checking of ATLP. We are given a CEGS M, a state q in M, and an ATL^u_r formula φ. First, we sketch the reduction to model checking arbitrary ATLP formulae against CGSP (i.e., CGS with plausibility sets given explicitly in the model). Let Σ^u be the set of all uniform strategy profiles in M. We take $\mathsf{CGSP} M'$ as M (sans epistemic relations) extended with plausibility set $\Upsilon = \Sigma^u$. Then:

$M, q \models_{\mathsf{ATL}^u_r} \langle \langle A \rangle \rangle^u_r \varphi$ \iff \hspace{1em} $M', q \models_{\mathsf{ATLP}} \mathsf{Pl} \langle \langle A \rangle \rangle \varphi$,

which completes the reduction.\footnote{All states in the model for z_r are additionally indexed by r.}

\footnote{We note in passing that, technically, the size of the resulting model M' is not entirely polynomial. M' includes the plausibility set Υ, which is exponential in the number of states in M (since it is equal to the the set of all uniform strategy profiles in M). This is of course the case when we want to store Υ explicitly. However, checking if a strategy profile is uniform can be done in time linear wrt the number of states in M, so an implicit representation of Υ (e.g., the checking procedure itself) requires only linear space.}

\footnote{We do not discuss this issue in more depth, as we focus on the other variant of ATLP (with ATLI-based terms) in this paper.}
For model checking ATLP formulae with abstract terms ω against "pure" concurrent game structures, the reduction is similar. We take $\mathsf{CGS} M'$ as M minus epistemic relations, and plus a plausibility mapping $[\cdot]$ such that $[\omega]_q = \Sigma^u$. Then, again,

$$M, q \models \mathsf{ATL}^{u}_{ir} \langle A \rangle^{u}_{ir} \varphi \iff M', q \models \mathsf{ATLP} (\text{set-pl} \omega) \Pi (\langle A \rangle \varphi).$$

3.3.4 From ATL^{u}_{ir} to ATLP with ATLI-Based Plausibility Terms

The reduction of ATL^{u}_{ir} model checking to model checking of $\mathsf{ATLP}^{\mathsf{ATLI}}$ against "pure" CGS is more sophisticated. We do not present a reduction for full model checking of ATL^{u}_{ir}; it is enough to show the reduction for the kind of models that we get in Section 3.3.2 (i.e., turn-based models with two agents, two "final" states q_\top, q_\bot, no cycles except for the loops at the final states, and uncertainty appearing only in states one step before the end of the game).

First, we reconstruct the concurrent epistemic game structure M_p from Section 3.3.2 so that the last action profile is always "remembered" in the final states. Then, we show how uniformity of strategies can be characterized with a formula of ATLI extended with epistemic operators. Next, we show how the model and the formula can be transformed to get rid of epistemic links and operators (yielding a "pure" CGS and a formula of "pure" ATLI). Finally, we show how the resulting characterization of uniformity can be "plugged" into an ATLP formula to require that only uniform strategy profiles are taken into account.

Adding more final states to the model.

To recall, the input of ATL^{u}_{ir} model checking consists in our case of a concurrent epistemic game structure M_p (like the one in Figure 3) and an ATL^{u}_{ir} formula Φ_p (cf. Proposition 4). We begin the reduction by reconstructing M_p to M'_p in which the last action profile is "remembered" in the final states. The idea is based on the construction from [11, Proposition 16] where it is applied to all states of the system, cf. Figure 4.

In our case, we first create copies of states q_\top, q_\bot, one per incoming transition. That is, the construction yields states of the form $\langle q, \alpha_1, \ldots, \alpha_k \rangle$, where $q \in \{q_\top, q_\bot\}$ is a final state of the original model M_p, and $\langle \alpha_1, \ldots, \alpha_k \rangle$ is the action profile executed just before the system proceeded to q. Each copy has the same valuation of propositions as the original state q, i.e., $\pi(\langle q, \alpha_1, \ldots, \alpha_k \rangle) = \pi(q)$. Then, for each action $\alpha \in \mathcal{Act}$ and agent $i \in \mathcal{Agt}$, we add a new proposition $i : \alpha$. Moreover, we fix the valuation of $i : \alpha$ in M'_p so that it holds exactly
in the final states that can be achieved by an action profile in which \(i \) executes \(\alpha \) (i.e., states \(\langle q, \alpha_1, ..., \alpha_i, ..., \alpha_k \rangle \)). Note that the number of both states and transitions in \(M'_p \) is linear in the transitions of \(M_p \).

The transformation produces model \(M'_p \) which is equivalent to \(M_p \) in the following sense: let \(\varphi \) be a formula of \(\text{ATL}^{\text{ir}}_u \) that does not involve special propositions \(i : \alpha \). Then, for all \(q \in \text{St} \):

\[
M_p, q \models_{\text{ATL}^{\text{ir}}_u} \varphi \iff M'_p, q \models_{\text{ATL}^{\text{ir}}_u} \varphi.
\]

In \(M'_p \), agents can “recall” their actions executed at states that involved some uncertainty (i.e., states in which the image of some indistinguishabil-
ity relation \sim_i was not a singleton). Now we can use ATLI (with additional help of knowledge operators, see below) to characterize uniformity of strategies.

ATLI+Knowledge (ATLI+K) In the next step, we will show that uniformity of a strategy can be characterized in ATLI extended with epistemic operators K_a. $K_a \varphi$ reads as “agent a knows that φ”. The semantics of ATLI+K extends that of ATLI by adding the standard semantic clause from epistemic logic:

$$M, q \models K_a \varphi \text{ iff } M, q' \models \varphi \text{ for every } q' \text{ such that } q \sim_a q'.$$

We note that ATLI+K can be also seen as ATEL [28] extended with intentions.

Characterizing uniformity in ATLI+K. Let us now consider the following formula of ATLI+Knowledge:

$$\text{uniform}(\sigma) \equiv (\text{str}\sigma) (\emptyset) \Box \bigwedge_{i \in \text{Agt}} \bigvee_{\alpha \in d(i, q)} K_i (\emptyset) \Diamond i : \alpha.$$

The reading of $\text{uniform}(\sigma)$ is: suppose that profile σ is played $(\text{str}\sigma)$; then, for all reachable states $(\emptyset) \Box$, every agent has a single action $(\bigwedge_{i \in \text{Agt}} \bigvee_{\alpha \in d(i, q)})$ that is determined for execution $(\emptyset) \Diamond i : \alpha$ in every state indistinguishable from the current state (K_i). Thus, formula $\text{uniform}(\sigma)$ characterizes the uniformity of strategy profile σ. Formally, for every concurrent epistemic game structure M, we have that $M, q \models \text{ATLI+K} \text{uniform}(\sigma)$ iff $\|\sigma|a\|$ is uniform for each agent $a \in \text{Agt}$ (for all states reachable from q). Of course, only reachable states matter when we look for strategies that should enforce a temporal goal.

Note that the epistemic operator K_a refers to incomplete information, but σ is now an arbitrary (i.e., not necessarily uniform) strategy profile. We observe that the length of the formula is linear in the number of agents and actions in the model.

Translating Knowledge to Ability. To get rid of the epistemic operators from formula $\text{uniform}(\sigma)$ and epistemic relations from model M'_p, we use the construction from [14] (which refines that from [11, Section 4.4]). The construction yields a concurrent game structure $tr(M'_p)$ and an ATLI formula $tr(\text{uniform}(\sigma))$. The idea can be sketched as follows. The set of agents becomes extended with epistemic agents e_i (one per $a_i \in \text{Agt}$), yielding $\text{Agt}' = \text{Agt} \cup \text{Agt}^e$. Similarly, the set of states is augmented with epistemic states q^e for every $q \in St'$ and $e \in \text{Agt}^e$; the states “governed” by the epistemic agent e_a...
Figure 5: Getting rid of knowledge and epistemic links
are labeled with a special proposition \(e_a \). The “real” states \(q \) from the original model are called “action” states, and are labeled with another special proposition \(\text{act} \). Epistemic agent \(e_a \) can enforce transitions to states that are indistinguishable for agent \(a \) (see Figure 5 for an example). Then, “\(a \) knows \(\varphi \)” can be rephrased as “\(e_a \) can only effect transitions to epistemic states where \(\varphi \) holds”. With some additional tricks to ensure the right interplay between actions of epistemic agents, we get the following translation of formulae:

\[
\begin{align*}
tr(p) &= p, & \text{for } p \in \Pi \\
tr(\neg \varphi) &= \neg \tr(\varphi) \\
tr(\varphi \lor \psi) &= \tr(\varphi) \lor \tr(\psi) \\
tr(\langle A \rangle \Box \varphi) &= \langle A \cup \text{Act}^e \rangle \Box (\text{act} \land \tr(\varphi)) \\
tr(\langle A \rangle \varphi \mathcal{U} \psi) &= \langle A \cup \text{Act}^e \rangle (\text{act} \land \tr(\varphi)) \mathcal{U} (\text{act} \land \tr(\psi)) \\
tr(K_i \varphi) &= \neg \langle e_1, \ldots, e_i \rangle \langle e_i \land \langle e_1, \ldots, e_k \rangle \rangle (\text{act} \land \neg \tr(\varphi)).
\end{align*}
\]

Note that the length of \(\tr(\varphi) \) is linear in the length of \(\varphi \) and the number of agents \(k \). Two important facts follow from [14, Theorem 8]:

Lemma 6 For every CEGS \(M \) and a formula of \(\text{ATL}^n \), that does not include the special propositions \(\text{act}, e_1, \ldots, e_n \), we have

\[
M, q \models_{\text{ATL}^n} \varphi \iff \tr(M), q \models_{\text{ATL}^n} \tr(\varphi).
\]

Lemma 7 For every CEGS \(M \), we have

\[
M, q \models_{\text{ATL+K uniform}(\sigma)} \iff \tr(M), q \models_{\text{ATL+K uniform}(\sigma)} \tr(\text{uniform}(\sigma)).
\]

Putting the pieces together: the reduction. We observe that \(\text{ATL}^n \) can be seen as \(\text{ATL} \) where only uniform strategy profiles are allowed. An \(\text{ATL+K} \) formula that characterizes uniformity has been defined in the previous paragraphs. It can be now plugged into our “\(\text{ATL} \) with Plausibility” to restrict agents’ behavior in the way the semantics of \(\text{ATL}^n \) does. This way, we obtain a reduction of \text{SNSAT}_2 \text{ to model checking of } \text{ATLP}\text{[ATL]}.

Proposition 8

\[
z_p \iff \tr(M'_p, q'_0) \models_{\text{ATLP\text{[ATL]}}} (\text{set-pl} \sigma.\tr(\text{uniform}(\sigma))) \Pi \tr(\Phi_p).
\]

Proof. We have

\[
z_p \iff M'_p, q'_0 \models_{\text{ATL}^n \text{[ATL]}} \Phi_p \iff \tr(M'_p, q'_0) \models_{\text{ATL}^n \text{[ATL]}} \tr(\Phi_p)
\]

\[
\text{iff } \tr(M'_p, q'_0) \models_{\text{ATLP\text{[ATL]}}} (\text{set-pl} \sigma.\tr(\text{uniform}(\sigma))) \Pi \tr(\Phi_p).
\]

\[\text{■}\]

An interested reader is referred to [14] for the technical details of the construction.
3.4 Summary of the Results

As a result, we obtain the following theorem.

Theorem 9 Model checking ATLP is Δ^P_3-complete with respect to the number of transitions in the model and the length of the formula.

On the way, we have also proved that checking strategic abilities when all players are required to play uniformly is Δ^P_3-complete (that is, harder than ability against the worst line of events captured by ATL formulae, which is “only” Δ^P_2-complete). We believe it is an interesting result with respect to verification of various kinds of agents’ ability under incomplete information. We note that the result from [20] for extensive games with incomplete information can be seen as a specific case of our result, at least in the class of games with binary payoffs.

4 Conclusions

In this technical report, we prove that model checking ATLP is Δ^P_3-complete, for abstract plausibility terms as well as terms based on formulae of “ATL with Intentions” (ATLI). On the way, we also define another interesting variant of ATL – where both proponents and opponents are required to use only uniform strategies – and we establish its model checking complexity.

The logics of ATLI and ATLP share many similarities. Thus, it might be even more elegant to “plug in” plausibility specifications written in ATLP itself. A preliminary take on this idea has been presented in [4], but the model checking complexity of the resulting language remains to be studied.

References

References

References
