Model Checking Coalition Logic on Implicit Models is Δ^P_3-complete

Nils Bulling
The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)
Prof. Dr. Christian Siemers (Hardware and Robotics)
Model Checking Coalition Logic on Implicit Models is Δ_3^P-complete

Nils Bulling

Clausthal University of Technology, Department of Informatics, Germany
bulling@in.tu-clausthal.de

Abstract

In this note we show that model checking Coalition Logic over Concurrent Game Structures in which the transition function is given implicitly by a set of Boolean formulae is Δ_3^P-complete.

1 Introduction

Coalition Logic [Pauly, 2002] (CL) is a strategic logic that allows to model and to reason about one-step abilities of agents. It is well known, that CL can be understood as the next-time fragment of Alternating-time Temporal Logic (ATL) [Alur et al., 2002]. Hence, model checking CL is at most as hard as for ATL. From [Alur et al., 2002] we know that model checking ATL is P-complete over Concurrent Game Structures (CGS's). In [Bulling et al., 2010] it is shown that the proof of the lower bound can easily be modified to provide also a P-hardness proof for CL. All these results are with respect to the size of a given CGS which is defined as the number of transitions in the model.

Often, the number of transitions in a CGS is exponential in terms of states and agents. Taking this into account it is reasonable to encode the transition function symbolically resulting in a more compact model; that is, in a model of smaller size. We will call such models implicit CGS’s. The size of such a model is measured with respect to the number of states and the size of the encoded transition function [Laroussinie et al., 2008]. Given this new representation/measure the model checking complexity of ATL is proven to be Δ_3^P-complete [Laroussinie et al., 2008, Jamroga and Dix, 2005] and [Jamroga and Dix, 2008]. In this note we prove that CL is also Δ_3^P-complete over implicit CGS's.
2 Coalition Logic: Syntax and Semantics

Firstly, we present the language L_{CL}; subsequently, we introduce implicit CGS’s and define a semantics for L_{CL}. In the following let Π be a non-empty set of propositions and $\text{Agt} = \{1, \ldots, k\}$ be a non-empty and finite set of agents.

2.1 The language

Coalition Logic (CL), introduced in [Pauly, 2002], is a logic for modeling and reasoning about strategic abilities of agents. The main construct of CL, $[A] \psi$, expresses that coalition A can bring about ψ in a single-step game.

Definition 1 (Language L_{CL} [Pauly, 2002]) The language L_{CL} is given by all formulae generated by the following grammar: $\phi ::= p | \neg \phi | \phi \land \psi | [A] \phi$, where $p \in \Pi$ and $A \subseteq \text{Agt}$.

In [Pauly, 2002], coalitional models were chosen as semantics for L_{CL}. These models are given by (St, E, π) consisting of a set of states St, a playable effectivity function E, and a valuation function π. The effectivity function determines the outcome that a coalition is effective for, i.e., given a set $X \subseteq St$ of states a coalition C is said to be effective for X iff it can enforce the next state to be in X. However, in [Goranko and Jamroga, 2004] it was shown that concurrent game structures (CGS’s) provide an equivalent semantics, and that CL can be seen as the *next-time fragment* of ATL.

2.2 Semantics

The semantics for L_{CL} is defined over a variant of transition systems where transitions are labeled with combinations of actions, one per agent. Formally, a concurrent game structure (CGS) is a tuple

$$\mathfrak{M} = (\text{Agt}, St, \Pi, \pi, Act, d, o)$$

which includes a non-empty finite set of all agents $\text{Agt} = \{1, \ldots, k\}$, a non-empty finite set of states St, a set of atomic propositions Π and their valuation $\pi : \Pi \rightarrow 2^{St}$, and a non-empty finite set of (atomic) actions Act. Function $d : \text{Agt} \times St \rightarrow 2^{Act}$ defines non-empty sets of actions available to agents at each state, and o is a (deterministic) transition function that assigns the outcome state $q' = o(q, \alpha_1, \ldots, \alpha_k)$ to state q and a tuple of actions $(\alpha_1, \ldots, \alpha_k)$ for $\alpha_i \in d(i, q)$ and $1 \leq i \leq k$, that can be executed by Agt in q. We also write $d_a(q)$ instead of $d(a, q)$. So, it is assumed that all the agents execute their actions synchronously: The combination of the actions, together with the current state, determines the next transition of the system.
A strategy of agent a is a conditional plan that specifies what a is going to do in each state; that is, a function $s_a : St \rightarrow Act$ where $s_a(q) \in d_a(q)$. The set of such strategies is denoted by Σ_a.

A collective strategy for a group of agents $A = \{a_1, \ldots, a_r\} \subseteq \text{Agt}$ is simply a tuple $s_A = (s_{a_1}, \ldots, s_{a_r})$ of strategies, one per agent from A. By $s_A|a_i$, we denote agent a’s part s_a of the collective strategy s_A where $a \in A$. The set of A’s collective perfect information strategies is given by $\Sigma_A = \prod_{a \in A} \Sigma_a$.

Function $\text{out}(q, s_A)$ returns the set of all paths λ that may occur when agents A execute strategy s_A from state q onward:

$$\text{out}(q, s_A) = \{ \lambda = q_0q_1q_2\ldots | q_0 = q \text{ and for each } i = 1, 2, \ldots \text{ there exists a tuple of agents’ decisions } \langle \alpha_{a_1}^{-1}, \ldots, \alpha_{a_k}^{-1} \rangle \text{ such that } \alpha_{a_j}^{-1} \in d_a(q_{i-1}) \text{ for every } a_j \in \text{Ag}, \text{ and } o(q_{i-1}, \alpha_{a_1}^{-1}, \ldots, \alpha_{a_k}^{-1}) = q_i \}.$$

The semantics for \mathcal{L}_{CL} is shown below. Informally speaking, $\mathcal{M}, q \models [\Sigma] \varphi$ if, and only if, there exists a collective strategy s_A such that φ holds in the next state on each computation from $\text{out}(q, s_A)$.

Definition 2 (Semantics \models) Let \mathcal{M} be a CGS. The semantics for \mathcal{L}_{CL}, denoted by \models, is defined as follows:

- $\mathcal{M}, q \models p$ iff $\lambda[0] \in \pi(p)$ and $p \in \Pi$;
- $\mathcal{M}, q \models \neg \varphi$ iff $\mathcal{M}, q \not\models \varphi$;
- $\mathcal{M}, q \models \varphi \land \psi$ iff $\mathcal{M}, q \models \varphi$ and $\mathcal{M}, q \models \psi$;
- $\mathcal{M}, q \models [\Sigma] \varphi$ iff there is a strategy $s_A \in \Sigma_A$ for A such that for every path $\lambda \in \text{out}(s_A, q)$, we have $\mathcal{M}, \lambda[1] \models \varphi$.

Formally, the logic CL is given by $(\mathcal{L}_{CL}, \models)$; that is, by the language \mathcal{L}_{CL} and the semantics just introduced.

An implicit concurrent game structure (to the best of our knowledge, this has been introduced for the first time in [Laroussinie et al., 2008], but already present in the ISPL modeling language behind MCMAS [Raimondi and Lomuscio, 2004, Raimondi, 2006]) is defined similarly to a CGS but the transition function is encoded in a particular way often allowing for a more compact representation than the explicit transition table. Formally, an implicit CGS is given by $\mathcal{M} = (\text{Ag}, \text{St}, \Pi, \pi, \text{Act}, d, \hat{o})$ where \hat{o}, the encoded transition function, is given by a sequence

$$((\varphi_{r_0}^0, q_{r_0}^0), \ldots, (\varphi_{r_e}^e, q_{r_e}^e))_{r=1, \ldots, |\text{St}|}$$

A path λ is an infinite sequence of states such that subsequent states are connected by a transition. We use $\lambda[i]$ to refer to state q_i, i.e. $\lambda[i] = q_i$, provided that $\lambda = q_0q_1\cdots \in \text{St}^{\omega}$.
where \(t_r \in \mathbb{N} \), \(q_r^i \in St \) and each \(\varphi_r^i \) is a Boolean combination of propositions \(\text{exec}_j^i \), where \(j \in \text{Agent}, \alpha \in \text{Act}, i = 1, \ldots, t \) and \(r = 1, \ldots, |St| \). It is required that \(\varphi_r^i = \top \). The term \(\text{exec}_j^i \) stands for “agent \(j \) executes action \(\alpha \)”. We use \(\varphi[\alpha_1, \ldots, \alpha_k] \) to refer to the Boolean formula over \(\{\top, \bot\} \) obtained by replacing \(\text{exec}_j^i \) with \(\top \) (resp. \(\bot \)) if \(\alpha_j = \alpha \) (resp. \(\alpha_j \neq \alpha \)).

The encoded transition function induces a standard transition function \(o_\hat{o} \) as follows:

\[
o_\hat{o}(q_i, \alpha_1, \ldots, \alpha_k) = q^j_i \text{ where } j = \min\{\kappa \mid \varphi^i_{\kappa}[\alpha_1, \ldots, \alpha_k] \equiv \top\}
\]

That is, \(o_\hat{o}(q_i, \alpha_1, \ldots, \alpha_k) \) returns the state belonging to the formula \(\varphi^i_{\kappa} \) (associated with state \(q_i \)) with the minimal index \(\kappa \) that evaluates to “true” given the actions \(\alpha_1, \ldots, \alpha_k \). We also use \(\hat{o}(q_i, \alpha_1, \ldots, \alpha_k) \) to refer to \(o_\hat{o}(q_i, \alpha_1, \ldots, \alpha_k) \). Note that the function is well defined as the last formula in each sequence is equivalent to \(\top \): no deadlock can occur. The size of \(\hat{o} \) is defined as

\[
|\hat{o}| = \sum_{r=1}^{t} \sum_{j=1}^{|St|} |\varphi^j_r|
\]

that is, the sum of the sizes of all formulae. Hence, the size of an implicit CGS is given by \(|St| + |\text{Agent}| + |\hat{o}| \). Recall, that the size of an explicit CGS is \(|St| + |\text{Agent}| + m \) where \(m \) is the number of transitions. Finally, we require that the encoding of the transition function is reasonably compact, that is, \(|\hat{o}| \leq O(|o_\hat{o}|) \).

3 Model Checking Complexity

Firstly, we recall two well-known results.

Theorem 1 ([Laroussinie et al., 2008; Jamroga and Dix, 2005]) Model checking ATL over implicit CGS’s is \(\Delta^P_3 \)-complete with respect to the size of the model and the length of the formula.

The \(\Delta^P_3 \)-hardness proof of [Laroussinie et al., 2008] uses the “nexttime” and “until” temporal operators in the construction of an ATL formula that is used in the reduction of SNSAT\(_2\). We give a proof that uses only the language \(\mathcal{L}_{\text{CL}} \).

Theorem 2 Model checking CL over implicit CGS’s is \(\Delta^P_3 \)-complete with respect to the size of the model and the length of the formula.

Proof. The upper bound follows from the result that model checking ATL is in \(\Delta^P_3 \).
We extend the proof from [Laroussinie et al., 2008] such that only the next-time operator is used. The proof is done by reducing the Δ_2^0-complete problem SNSAT$_2$. A SNSAT$_2$ instance \mathcal{I} consists of formulae

$$z_i = \exists X_i \forall Y_i \psi_i(z_1, \ldots, z_{i-1}, X_i, Y_i)$$

where $X_i = \{x_i^1, \ldots, x_i^s\}$ and $Y_i = \{y_i^1, \ldots, y_i^s\}$ are sets of variables and $s \in \mathbb{N}$ for $i = 1, \ldots, m$. According to the truth of the formulae ψ_i, the value of each z_i is uniquely defined. A valuation of \mathcal{I} is a mapping $v_{\mathcal{I}}$ assigning these unique values to each variable z_i. Moreover, if $v_{\mathcal{I}}(z_i) = \top$ we define

$$v_{\mathcal{I}}^{z_i} : X_i \to \{\top, \bot\}$$

to be some valuation of the variables X_i that witnesses the truth of z_i. Note, that each z_i recursively depends on z_{i-1}, \ldots, z_1. In the following we will often omit the subscript \mathcal{I}.

We construct the following implicit CGS $\mathcal{M}_{\mathcal{I}}$ for a given SNSAT$_2$ instance \mathcal{I}. Firstly, we introduce agents, each controlling one variable. There are agents a_i^1 (one agent per variable x_i^1) with actions $\{\top, \bot\}$, b_i^1 (one agent per variable y_i^1) with actions $\{\top, \bot\}$, c_i (one agent per z_i) with actions $\{\top, \bot\}$, and d (the “selector”) with actions $\{1, \ldots, m\}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, s$. We use A (resp. C and B) to denote the set of all agents a_i^1 (resp. c_i and b_i^1).

The states of the model are given by states q_i and \bar{q}_i (one per z_i) and the two states q_{\top}, q_{\bot}. States q_i are labelled with proposition neg and state q_{\top} is labelled with sat.

Before giving the formal definition of the encoded transition function, we explain the role of the agents. Agents a_i^1 (resp. b_i^1 and c_i) determine the value of the variables x_i^1 (resp. y_i^1 and z_i). Action \top (resp. \bot) sets them true (resp. false). Agent d has a more elaborated function. Once, all moves of the other agents are fixed, the agent can decide to “check” whether formula ψ_i holds regarding the actions of the other agents by executing action i. If the check is successful, the system goes to the winning state q_{\top}. If not, it goes to the losing state q_{\bot}. However, there are some exceptions to that which will be presented in the formal definition of the encoded transition function.

The part $(\varphi_1^0, q_0^0), \ldots, (\varphi_m^0, q_m^0)$ in the encoded transition function associated with state q_i is defined as follows (where ψ_i^0 denotes the formula ψ_i in (\ast) in which each occurrence of x_i^1 (resp. y_i^1 and z_i) is replaced by exec_{\top}^d (resp. exec_{\top}^b and exec_{\top}^c)) (recall, that exec_a^i means that agent a executes action i):

1. $$(\text{exec}_k^d \land (\land_{j=1,\ldots,k} \text{exec}_{\top}^c) \land \psi_i^0, q_{\top})_{k=i,\ldots,1,$$
2. $$(\text{exec}_k^b \land (\land_{j=1,\ldots,k} \text{exec}_{\top}^c), q_{\bot})_{k=i,\ldots,1},$
3. $$(\text{exec}_k^d \land \neg \text{exec}_{\top}^c, \bar{q}_k)_{k=i-1,\ldots,1},$
4. $$(\top, q_{\top})$$

Moreover, there are loops at states $q_{\top} \text{ and } q_{\bot}$ and transitions from $\bar{q}_i \text{ to } q_i$ for $i = 1, \ldots, m$. The following lemma is fundamental to our reduction.
Lemma 3 Let $\chi_0 = \top$ and

$$\chi_{r+1} = [A \cup C](\text{sat} \lor (\neg \land [0] \neg \chi_r))$$

for $r = 0, \ldots, m - 1$ where sat and \neg are propositional symbols. Then, for all $i \leq m$ and $r \geq i$ it holds that

$$\mathcal{M}, q_i \models \chi_r \text{ iff } v_T(z_i) = \top.$$

Proof of Lemma. We proceed by induction on i. Firstly, we consider the base case $i = 1$.

\Rightarrow: Suppose that $\mathcal{M}, q_1 \models \chi_r$ for $r \geq 1$. Due to the definition of the transition function only rules $(1,2,4)$ are present; hence, only q_{\top} and q_{\bot} are reachable. That is, the formula $\mathcal{M}, q_1 \models [A \cup C] \text{sat}$ must be satisfied (as the label \neg cannot become true). But then, there must be a valuation of the x_i's such that for all valuations of the y_i's, ψ_1 evaluates true; hence, $v(z_1) = \top$.

\Leftarrow: Suppose $v(z_1) = \top$. Then, there is a valuation of the variables x_i such that for all valuations of the y_i's the formula ψ_1 evaluates true. It is easily seen that the strategy in which each agent in A plays according to the valuation given by v^1 and c_1 plays \top witnesses that $q_1 \models [A \cup C] \bigcirc \text{sat}$ (and thus also $\mathcal{M}, q_1 \models \chi_r$ for $r \geq 1$).

For the inductive step suppose the assumption holds up to index $i \geq 1$.

\Rightarrow: Suppose $\mathcal{M}, q_{i+1} \models \chi_r+1$ for $r \geq i$. Firstly, we prove the following claim.

Claim: Suppose $\mathcal{M}, q_{i+1} \models \chi_{r+1}$, then each c_l with $l \leq i$ plays according to the valuation $v(z_i)$.

Proof of claim. Suppose c_l plays \bot and d plays l. Then, the next state of the system is q_i and consequently, $\mathcal{M}, q_i \models \neg \chi_r$ and by induction hypothesis $v(z_i) = \bot$.

The other case is proven by induction. Suppose $i = 1$, $\mathcal{M}, q_2 \models \chi_{r+1}$, and c_1 plays \top. We have to show that $v(z_1) = \top$. Suppose the contrary. Then, for any strategy of $A \cup C$ there is a strategy of B such that ψ_1^i evaluates false. Hence, if d plays 1 rule (2) is firing and the next state is q_{\bot} and thus $\mathcal{M}, q_2 \not\models \neg \chi_{r+1}$. Contradiction!

For the induction step, suppose that all agents c_l for $l < i$ play according to $v(z_i)$, that $\mathcal{M}, q_{i+1} \models \chi_{r+1}$, and $c_i = \top$. We show that $v(z_i) = \top$. For the sake of contradiction, suppose that $v(z_i) = \bot$. Again, for any strategy of $A \cup C$ witnessing χ_{r+1} we have that there is a strategy of B that falsifies ψ_1^i (note, that by assumption c_1, \ldots, c_{i-1} play according to $v(z_1), \ldots, v(z_{i-1})$). So, if d plays i rule (2) is firing and the next state is q_{\bot} which implies $\mathcal{M}, q_{i+1} \not\models \chi_{r+1}$. Contradiction!

Now let s_{AC} be the strategy of agents $A \cup C$ that witnesses χ_{r+1} in q_{i+1}. Suppose player d plays $i + 1$. Irrelevant of the move of c_{i+1} either rule (1) or
rule (2) is firing. This does only depend on the valuation of ψ'_{i+1}. By assumption, we must have that ψ'_{i+1} is true for all strategies of B else $M, q_i \Vdash \chi_{i+1}$. Because of the previous claim, we must also have that $v(z_{i+1}) = \top$.

“\Leftarrow”: Suppose $v(z_{i+1}) = \top$. Let s_{AC} be the strategy in which players c_j play according to $v(z_j)$ and players a_j play according to v^{\top} if $v(z_j) = \top$ and arbitrarily if $v(z_j) = \bot$ for $a = 1, \ldots, s$. Suppose player d plays $l \leq i + 1$. Now, if each c_j for $j = i, \ldots, l$ plays \top we have that ψ' is true as there is no valuation of variables Y that makes ψ' false given the choices of $A \cup C$; hence, the next state is q_{\top}. Secondly, if d plays l and there is some agent c_j, $j > l$, that plays \bot; then rule (4) fires and the next state is also q_{\top}; the same holds if d plays $l > i + 1$. Finally, suppose d plays l and $c_i = \bot$. Then, by the definition of the actions of agents C, $v(z_i) = \bot$ and by induction hypothesis $M, q_i \Vdash \neg \chi_r$; thus, $M, q_i \Vdash \neg \chi_r$ is true. Taking all these cases together we have $M, q_{i+1} \Vdash \chi_{i+1}$.

This gives us the following polynomial reduction:

$$z_m = \top \iff M, q_m \Vdash \chi_m$$

4 Conclusions

We have shown (Theorem 2) that model checking L_{CL} over implicit CGS’s is already Δ^P_3-complete; thus, resides in the same complexity class as model checking the more expressive language L_{ATL}. This mirrors the situation for (explicit) models over which model checking each of these two logics is P-complete.

References

