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Abstract. Reconfigurable microprocessors and microcontroller are facing their market 
introduction on a broad base. What are the advantages of these new devices, the 
challenges, and is a classification of different architectures available? This paper gives an 
introduction into this new field and provides some hints for applying reconfigurable 
microcontroller to different classes of applications. 

1 Introduction 

The microprocessor world is becoming more complicated. While the item processor was solely used 
for the Central Processing Unit (CPU) of the von-Neuman-model, this has changed through the last 
years: A processor is something like the heart of a computational machine. 

The connection of the processor and – related to this – of the item software with the von-Neuman-
model, specifically with the execution model of von Neuman, is still present but becoming more 
loosely. Therefore the first question arises how significant distinctions between several classes of 
processors can be obtained. The second question concerns the consequences of these distinctions. 

Reconfigurable processors as well as microcontroller mark a significant new area: After developing 
different processor and execution models as well as finding characteristics to distinguish between 
them, reconfigurable processors contain nothing less than joining at least two different paradigm 
inside. They are by definition of hybrid nature, and this makes computing much more powerful and 
efficient at the price of more sophisticated programming. 

This paper intends to discuss some aspects of these reconfigurable devices. Chapter 2 gives an intro-
duction to some different execution paradigm and the resulting consequences. Chapter 3 discusses the 
overall architecture of computing machines from a three-tiers-approach: software, micro-architecture 
and fabric. This leads to an explanation of different approaches on the market. 

Chapter 4 introduces the role of peripheral elements inside computing machines. These elements, 
formerly introduced by von Neuman, Goldstine and Burkes as the necessary part for connecting 
computer and the outside world, tend to add functionality inside for own computing power. This 
chapter presents finally a classification scheme for microcontroller with integrated reconfigurable 
processor kernel as well as reconfigurable peripheral elements. 

As some suppliers of (re-)configurable processors are present on the market, some of them are 
discussed concerning their classification inside the scheme in chapter 5. 

2 Sequential versus Configurable Computing 

The distinction between sequential computing following the execution paradigm by von Neuman and 
configurable computing used inside programmable logic devices (PLDs), specifically inside the well-
known FPGA devices (field-programmable gate arrays), was discussed several times before. One 
introduction into this topic is given in [1] and shall be summarised inside this chapter. 



 

2.1 Execution Dimension 

Figure 1 shows a simple part of a software program, written in C. This program consists of an infinite 
loop (while(1)) and an if-construct inside to distinguish between two cases. 

#define INPORT_ADR 0x1000
#define OUTPORT_ADR 0x2000

unsigned char *a = INPORT_ADR;
unsigned char *b = OUTPORT_ADR;

main()
{

while(1) {
if( *a == 0 )

*b = 1;
else

*b = 0;
}

}
 

Figure 1. Example program written in C 

The translation for a von-Neuman-based processor consists of several instructions. Figure 2 shows this 
translation for a RISC-like architecture: While the details are not important, the principle is that the 
program consists not only of several instructions but a well-defined sequence. The execution of this 
program is performed by executing the first instruction, followed by the next. Data-dependent 
branches lead to several ways the program may take, shown in figure 3. It should be noted that this 
kind of execution is maintained even in superscalar architectures with instruction level parallelism 
(ILP). 

 L0: MOV R1, #a ; Address of a 
 MOV R2, #b ; in R1, of b in R2 
 
L1: LD R3, (R1) ; Inport bits in R3 
 CMP R3, #0 ; IF-condition 
 BNE L3 ; 
 
L2: MOV R4, #1 ; IF-branch 
 JMP L4 ; 
 
L3: MOV R4, #0 ; ELSE-branch 
 
L4: ST (R2), R4 ; 
 JMP L1 ; 

 

Figure 2. Translation of the source-code from figure 1 into assembler code 

The semantic interpretation of this program leads to a complete other solution: The program and the 
executing microprocessor (or microcontroller) behave like a NOR-gate with 8 inputs, and this could be 
directly implemented in hardware. Figure 4 shows one solution using an AND-gate and some 
inverting elements, this implementation is used inside e.g. PLDs 
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Figure 3. Control flow graph using basic blocks 

As PLDs are also programmable – this means that the way the IC works is finally defined outside the 
factory – the algorithm shown in figure 4 must be mapped into the IC. This is done by structuring pre-
defined logic blocks and their communication lines inside. In the case of figure 4, 8 inputs were used, 
connected to an inverting element each, and the inverting elements were connected to the inputs of an 
AND-gate with at least 8 outputs. The difference in execution, compared to the von-Neuman-
paradigm, is that after structuring has taken place, the complete program works as one instruction: No 
sequence is performed inside. 
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Figure 4.  Optimised solution for implementation inside PLDs 
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Figure 5. Configurable and Sequential Computing 



 

This leads to the item execution dimension: While execution in the von-Neuman paradigm is 
performed through a sequence of pre-defined instruction – sequence in the sense of sequence in time –
, execution in the PLD paradigm is done by structuring pre-defined instructions in space. Space means 
the two-dimensional IC area (where two-dimensional could be replaced by three-dimensional in the 
future), and this distinction leads to computing in time versus computing in space. Figure 5 shows the 
classification of these two computing paradigm with respect to the variability of the executed 
instruction(s) and the number of instructions per algorithm. 

The two computing paradigm appear to be well separated from each other, but a transitional paradigm 
is known with reconfigurable computing. In this case, an algorithm may be translated into a sequence 
of configurations. 

2.2 Characteristic Timing Values for the Computing Paradigms 

A close look on the characteristic timing values for several kinds of executing hardware (this shall be 
called ‘processor’ for the rest of this paper) shows further significant distinctions. Table 1 summarises 
the values. 
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Table 1. Characteristic timing values for several hardware architectures 

The most significant value to distinguish between the three discussed programmable hardware plat-
forms is the binding duration. This defines the time period how long the machine is fixed to execute 
the actual instruction, and this must change inside a microprocessor but will be fixed inside a PLD. 
Reconfigurable devices may change by user-definition, and exactly this is the new degree of freedom. 

The two characteristics of (re-)configurable computing – computing in space and the user-defined 
binding time to a specific algorithm – lead directly to two application fields: high performance 
computing and real-time applications. For high performance computing, the execution in space is very 
worthy, because long execution times by the time sequence are omitted. High performance does not 
mean that supercomputing is concerned: High performance within embedded systems means that 
relatively high performance standards are met using microprocessors with other important 
characteristics like good power/performance relationship. 

Meeting real-time constraints is sometimes hard using von-Neuman processors, because the sequential 
execution implies that the necessary program for reaction are just not available. This can be 
significantly improved using (re-)configurable elements, because programs executing in these 
elements are always available. 

Serving performance as well as real-time capabilities are the most important motivations for 
combining processors and configurable structures to reconfigurable processors. While the distinction 
between configurable and reconfigurable computing is well-known, characteristics are vanishing in 
this combination, and therefore both items are used synonymous for the purposes of this paper. 



 

3 Three Tiers for Computing Machines: Software, Architecture and Fabric 

The role of processors is to execute applications, and these applications are described by ‘software’. 
General-purpose processors are designed to fit all applications, neglecting that the application’s 
demand for program and/or data size might run out every boundary. The question is whether general-
purpose processors are doing their job efficiently or not [3]. 

3.1 General-Purpose and Custom Processors 

“You can’t fit a square peg into a round hole.” Actually, given a large enough hole, you can. This is 
the answer for general-purpose processors to fit an application into a processor-based system. Figure 6 
demonstrates the meaning of this rule for a very simple application. 
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Figure 6. Processor types executing a very simple application 
a) General-purpose processor  b) semicustom processor  c) custom processor 

The simple program consists of the implementation of the statement  

t = t + m[i] * p1 

It is further assumed that this statement is part of a loop, and after finishing the loop, the result would 
be written into port p2. This multiply-accumulate operation is frequently used within digital signal 
processing application. A general-purpose processor would use the following sequence of steps to 
implement this operation: 

1. Move i from the register file to a data memory address register. 

2. Read m[i] into the register file. 

3. Store p1 in the register file. 

4. Read m[i] and p1 from the register file, multiply them, and store the result in the register file. 

5. Read t and m[i] * p1 from register file, add them, and store the result in t in the register file. 

The semicustom processor in figure 6b solves the same algorithm using only 2 steps: Addressing the 
data memory by the index i and simultaneously reading port p1, the memory cell and t from register 
file, multiplying p1 and m[i], adding the result to t and storing the result in t in the register file. The 
custom processor finally executes this within one step. 



 

What’s the lesson learned from this? In fact, a custom processor would execute the specific application 
in a much more efficient and/or accelerated way, on the other side the general-purpose processor is 
programmable for ‘all’ other applications too. This leads to the question whether a reconfigurable 
processor could unify these advantages, and at which price this could be done. 

The actual answer to this flexibility/efficiency trade-off is to use semicustom processor wherever 
applicable. This has lead to e.g. the class of DSPs, the digital signal processors, and to microcontroller. 
While DSPs have to handle data streams, microcontroller consist of a microprocessor kernel and at 
least one integrated peripheral function or memory part on the same die. The interesting news is that 
the microprocessor kernel is often optimised to handle external events and to follow control algorithms 
with their segmented structure. Both examples of semicustom processors are very frequently used, and 
if reconfigurable processors want to play an important role in the digital world, they have to compete 
with at least one of these semicustom processor subclasses. 

3.2 Structures of Processor Classes 

Figure 7 shows what actually takes place in the processor market and architectures. 
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Figure 7. Mapping of processor architecture and IC fabric 



 

Three tiers are identified for the use and the structures of processors: Software, architecture and fabric 
(the chip is just the product but an additional tier). 

The software plays an important role for all general-purpose and semicustom processors and may play 
an important role for custom processors, if they are mapped to programmable IC fabrics. The 
architecture tier might be separated into general-purpose designs, in almost all cases following the 
von-Neuman-principle, in semicustom designs, again following the von-Neuman-execution principle 
but now with enhancements like specialised Harvard memory architectures and additional units inside 
the processor, and the custom processors. The latter are not limited to any computing paradigm, but 
design pattern like cellular automaton are of course existing. 

All these architectural subclasses may be mapped (and will be mapped in the future) on at least three 
kinds of fabric: Custom, semicustom and programmable, whereas combinations are of course possible. 
In this three-tier-presentation, some combinations are well-known, e.g. the combination of a custom 
processor with a programmable IC fabric: This is a typical application using an FPGA (field-
programmable gate array) or a PLD (programmable logic device). 

Reconfigurable processors are either general-purpose processors or semicustom processors, mapped 
partly or even complete to a programmable IC fabric. 

3.3 The Role of Peripheral Elements 

Inside typical embedded systems applications, the microprocessor kernel is only half of the game, the 
other part is located inside the peripheral elements. These elements, defined in the von-Neuman-
architecture as the connecting unit, are of increasing importance as shown by some studies. 
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Figure 8.  Performance ratio of Input/Output and core 

Figure 8 shows the ever growing performance requirements of peripheral elements in the past years. 
For typical applications in the area of embedded systems, many peripheral elements like bus 
connections (CAN), timer arrays or processors and AD converter are used, and they have some 



 

computational power integrated inside. If this computing power is omitted, the processor kernel must 
provide it additionally to its own tasks. Beside all considerations concerning real-time capabilities, just 
for providing the same speed the processor speed (e.g. provided by the clock rate) should be enhanced 
by a factor of more than 3. 

This shows one possible way for the future: Providing peripheral elements with configurable 
computing capacities makes them more flexible, enhances the real-time capabilities and relieves the 
processor core from most often periodic tasks. 
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Figure 9. Microcontroller architecture with core and peripheral elements 

Figure 9 shows the three-tiers presentation of this microcontroller architecture. It is important to note 
that the software plays now two roles, because the core itself is programmed by the software as well 
the peripheral elements. As it is assumed that the peripheral elements are configured – which is in fact 
a slightly different, more hardware-related kind of software – the software development becomes 
significantly more complex: This is the price for the improvements. 



 

4 Classification of Reconfigurable Microcontroller 

4.1 Overview of Reconfigurable Parts inside Microcontroller 

An actual microcontroller might be configurable in two main parts: The processor core and/or 
peripheral elements. Therefore we can identify two classes for reconfiguration: core reconfiguration 
and I/O reconfiguration. 

The processor core itself may contain reconfigurable parts and sequential working parts clearly 
separated from each other and loosely coupled through signalling lines. This concept is comparable to 
a coprocessor approach, where the coprocessor is completely reconfigurable. Another well-known 
item for this approach is “customised computing machine” (CCM, [4]). 

The other approach integrates reconfigurable elements in parts of the core. This is used for defining 
new operations and instructions. Both approaches are discussed in the following sections. 

4.2 The Coprocessor Approach 

Figure 10 shows a sample architecture using a RISC-like microcontroller core with a reconfigurable 
coprocessor loosely coupled to the core. 
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Figure 10.  Coupling a RISC-like microcontroller core with a reconfigurable coprocessor 

The core architectures shows a 4-stage pipeline including data forwarding (for resolving data 
dependences) and a look-ahead resolution (for computing branch addresses), while the memory 
interface is omitted for clearance. Instead of this, a reconfigurable coprocessor is coupled to the core, 
and this interface requires at least one signalling line to the fetch-unit and a bus system for transferring 
data using the memory access subunit. 

The microcontroller core looks at the coprocessor as part of the memory or as part of the input/output-
space, if available. A small number of addresses (e.g. 16) must be mapped exclusively in the address 
space of this coprocessor, and the processor may submit commands and data and receive results. 



 

This kind of memory-mapped coupling is the absolute minimum. For practical purposes, it is desirable 
to provide the coprocessor with service request capabilities. These signalling lines, often used as input 
to the interrupt request system, are of great interest, if the coprocessor works completely asynchronous 
to the microcontroller core, indeed a very normal use-case. The interrupt request will be coupled to the 
fetch-unit as shown in figure 10. 

This class of reconfigurable microcontroller architecture is very useful for core as well as peripheral 
applications, because it might be exclusively mapped to support any computation. If the coprocessor 
has additional links to the input/output system of the microcontroller – in the simplest case, input 
and/or output pins are connected to the coprocessor – it might act independent of the microcontroller 
core. 

The software interface to support this architecture is comparatively simple, because the application 
must be partitioned on system or application level. This is a well-known hardware/software co-design 
approach, where main tasks are identified on system level, modelled using a system description 
language (which actually might be “C” too), simulated or estimated concerning their runtime 
behaviour and then partitioned and mapped to different execution units. 

Please note that this approach is not simple, it is only comparatively simple. Currently the main work 
is performed by the system designer, and after partitioning the application, the parts often must be 
coded once more to meet the requirements of the executing system: While the native high-level 
language of microcontroller is something like “C” or “C++”, the native language for configurable 
systems is VHDL (Very High-Speed Integrated Circuits Hardware Description Language) or Verilog, 
and even worse for reconfigurable systems there exists no “native language”. 

4.3 The Reconfigurable Core Approach 

Figure 11 uses the same 4-stage pipelining RISC-architecture for discussion of the other approach, 
which uses reconfigurable enhancements inside parts of the core. 
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Figure 11.  Enhancing a RISC-like core 



 

The most obvious way to create new operations is to locate reconfigurable parts inside the 
arithmetical-logical unit (ALU). Most of the microcontroller instructions are executed inside this unit 
(exceptions are branches, jumps and other control flow instructions). If the reconfigurable part consists 
of pre-defined operations, connectable through configurable data paths, this would obviously create 
new, application-specific operations and therefore instructions. 

Figure 12 visualises a variant of this approach taken from [5]. This system, called Universal 
Configurable Blocks (UCB), connects some arithmetical units and logical units with the register file 
and integrates even local RAM for data storage. This system was adopted in [6] to a RISC-like 
microprocessor showing significant performance improvements up to 1.36 instructions per cycle. 
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Figure 12.  Reconfigurable structure for use inside microcontroller cores 

The executing unit is one part of the reconfigurable approach inside the core, the decode/load stage is 
the other affected unit. It is necessary to decode the new instructions and to load the required register 
contents to enable the execution part to do the job. Unfortunately this provides additional complexity. 

The last remark leads directly to the hardware-software-interface. The development system must 
provide some capacities to use the additional reconfigurable structures inside the core, otherwise the 
enhancements would be either useless or only usable by specialists. For general use, the automatic 
generation of the configurations by the development system is a strong requirement. 

The main approach for using reconfigurable structures inside the microarchitecture is to enhance 
performance. Actual compiler technology analyses the sourcecode in many ways and generates an 
intermediate representation [7], which is then translated to assembler code in the compiler backend. 
An analysis of the performance issues of loops or only operations is missing inside this technology. 

The profiling analysis, whether measuring or estimating the behaviour, will be one key element of the 
development tool, especially the compiling part. While the data base for the compiler backend is 
constant in the ‘classical’ part, it is subject to change when using reconfigurable structures inside the 
core. Figure 13 b) shows a simplified description of the additional parts. The generation and 
estimation of profiling information is the base for extracting configurations to enhance performance, 
which in turn influence the execution time. 
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Figure 13. Compiler technology for reconfigurable structure inside microcontroller core 
a) simplified normal control flow  b) extension for integrating configurable instructions 

Obviously this is a complex task, and the optimum results is hard to find and will depend on runtime 
values (e.g. input data). The extracted configurations will be a part of the data base for code 
generation, and the compiler backend depends on this added information. 

4.4 The Classification System 

As shown before, reconfigurable structures inside a microcontroller may be located in the input/output 
area, as an add-on in the near of the processor core or directly inside the core. This is the main 
classification characteristic. 

The other characteristic feature is the operational granularity. This was already used for classifying 
FPGAs (Field-Programmable Gate Arrays) from CPLDs (Complex Programmable Logic Devices) in 
the PLD-related world, but this time the granularity differs even more. 

We can separate bit-grained from word-grained architectures, where word-grained includes mixed 
architectures called multi-grained. The bit-grained approach uses FPGA-like structures inside the IC. 
The size of an intrinsic operation is exactly 1 bit, and this makes the configurable architecture very 
flexible but includes a lot of configuration overhead. 

On the other side, the word-granularity defines an intrinsic size of operations, e.g. 16 or 32 bit. This 
feature makes operations of word size faster, omits most of the configuration overhead but is limited 
in its flexibility. These structures are called FPFA, Field-Programmable Functional Arrays. 

Figure 14 shows the final classification using these two characteristics, the coupling to the processor 
core and the granularity. Neglecting the granularity, this leads to three classes of reconfigurable 
microcontroller (parts): cASIP (configurable Application-Specific Instruction Set Processor), CCM 
(Customised Computing Machine) and cIOP (configurable Input/Output Processor). 
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Figure 14.  Classification of configurable microcontroller 

The cASIP class enables primarily performance enhancements, because operations may be tailored to 
the application-specific requirements. On the other side, CCMs may also enhance performance, but 
this time, complete application parts must be mapped to the application-specific co-processor. If these 
mapped parts are exclusive to a specific task, this task can be made real-time capable too. 

This is the flexibility of the CCM approach. If application parts can be separated and completely 
mapped to the CCM, both performance and real-time behaviour can be supported. 

The cIOP approach is similar to the CCM with the extension that peripheral elements are directly 
supported. From the architectural viewpoint, CCM and cIOP are sometimes not distinguishable, and 
only the application decides how to use the resources. A very good use-case is the usage of cIOPs for 
network or interconnection purposes. This reduces workload from the processor core and enhances the 
overall system performance as well as the real-time behaviour of the connection. 

5 The Actual Market of Reconfigurable Processors 

Last not least a look at the market should be part of an classification. In this specific case, off-the-shelf 
examples for the classes shall be discussed, and therefore this market view is not complete. 

5.1 Altera NIOS and Xilinx MicroBlaze 

Altera with its NIOS design and Xilinx with MicroBlaze, both are typical softcore implementations: 
The microcontroller core is defined by a configuration inside the FPGA (Altera APEX, Xilinx Virtex). 
Thus optimised for direct use, the design is in fact changeable. This enables the developer to integrate 
more functionality inside the core and to use reconfigurable structures. 

Therefore both architectures can be mapped to all classes: Without core design change, the ICs may be 
used as CCM and/or cIOP, with change the ICs are part of the cASIP-class. In either case, the FPGAs 
provide bit-grained operations. 

5.2 Atmel AT94k 

Figure 15 shows the coupling of the microprocessor core and the embedded FPGA inside the AT94k-
architecture from Atmel Inc. This early example of coupling both kinds of computing machines on one 
die is a typical FPGA-based CCM or cIOP.  

The coupling of microcontroller and embedded FPGA is done via 16 addresses, an 8 bit data bus and 
some control lines. The usage of the FPGA part is not limited, it may be programmed for core 
applications (CCM) as well as peripheral tasks (cIOP). 
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Figure 15.  Coupling of microcontroller core (AVR) and embedded FPGA inside AT94k 

5.3 PACT XPP 

The eXtreme Processing Platform XPP of PACT Corp. is known as high performance and highest 
performance/power ratio architecture. Figure 16 [1] [8] shows the overall structure of the architecture 
with a supervisor configuration manager (SCM), one configuration manager (CM) per block and 
processing array cluster (PAC). While the configuration manager are implemented on microcontroller 
core, the PAC is in fact a reconfigurable structure. 

Figure 17 visualises the above mentioned reconfigurable structure: The PAC consists of some 
processing array elements (PAE) with storing, routing and computational capacities. The exact amount 
of PAEs per PAC depends on the actual architecture, but 48 to 64 are good values. 

The computational capacity per PAE is located in the ALU object providing operations at word level 
(e.g. 24 or 32 bit operational size). Forward register (FREG) and backward register (BREG) provide 
storage capacities as well as vertical routing resources for a height of 1 cell, while horizontal resources 
and implemented as segmented routing lines for the complete width of the PAE. 

The XPP was developed as co-processor and is therefore classified as CCM or embedded FPFA. The 
CCM approach does not mean that stand-alone application are not possible. If the application is 
completely data-flow dominated, it could be a good solution to use this architecture stand-alone. 
Nevertheless, the SCM and CMs must be used for management inside, but this is not the processor 
part in an application. 
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Figure 16.  XPP (extreme Processing Platform) of PACT 
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Figure 17.  Processing Array Element 



 

5.4 Tensilica Xtensa 

Tensilica Corp. calls its Xtensa processor core a configurable, extensible and synthesizable processor 
core [9]. This means that the system or hardware designer can configure the processor core or even 
extend it, not the application software designer. All configuration or extension is performed at design 
time. 

But beside this, the Xtensa architecture has everything a cASIP needs. Figure 18 shows a simplified 
version of the Xtensa architecture omitting everything from data and instruction caches, internal 
interfaces and exception handling. It is limited to the very internal part of the core. 

Align and Decode

P
ro

ce
ss

or
 C

on
tr

ol

Register File

ALU

MAC16

MUL16

MUL32

FPU

Designer-Defined
Register Files

Vectra DSP

Designer-Defined
Execution Units

Instruction Fetch
/ PC Unit

Data
Load/Store

Unit

Configurable

Base Feature Optional

Optional &
Configurable

Advanced Designer-
defined

 

Figure 18.  Simplified Xtensa architecture [9] 

The base features contain the fetch unit, the data load/store unit, align and decode and the processor 
control unit. The execution unit itself contains just the ALU as base feature, even the register file is 
configurable in the sense that it is parameterised by the design engineer. 

Optional parts can be included or not, while optional and configurable parts can be included or not, 
and if, they must be additional parameterised. This design work is done by choices and parameters, 
and the corresponding language is TIE, Tensilica Instruction Extension language, which is verilog-
like. The most interesting part are the advanced designer-defined regions, which must be defined 
explicitly using TIE. 

The software interface contains the definition of instruction mnemonics, operands, encoding and 
semantics. To obtain the best possible performance, the software interface includes a simulator and 
profiler to identify the ‘hot spots’ of the program. 

Tensilica’s Xtensa is not reconfigurable in the sense of this paper, because this is not done during 
runtime but synthesize (design) time. But the Xtensa architecture and software interface shows the 
way future products could proceed: Using reconfigurable elements instead of advanced designer-



 

defined areas but leaving the rest of the software including the C-compiler will be a good system 
approach, if the reconfigurable parts fit the user’s demands of the future. 
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