Model Checking Temporal and Strategic Logics

Nils Bulling and Jürgen Dix

EASSS 2010
École Nationale Supérieure des Mines
Saint-Étienne, France

23–27 August 2010
Time

Duration: 6 hours
Thursday, 26. August: 16:30–18:30,
Friday, 27. August: 11:00–13:00, 16:30–18:30

Course type

Level: advanced
Prerequisites: knowledge of propositional logic, basics of automata and complexity theory

Course website

http://cig.in.tu-clausthal.de/easss2010
About this course

In Part I of this lecture we introduce modal logic and show how it can be used to reason about knowledge of agents. We also discuss the correspondence of axioms with semantic properties of the models.

In Part II we consider the temporal logics LTL, CTL and CTL*. We discuss in Part III the model checking problem and elaborates on the complexity needed to solve it for the considered temporal logics. We follow an automata theoretic approach.

In Part IV we introduce strategic logics which are used to model the abilities of agents. We discuss the effect of perfect and imperfect information and perfect and imperfect recall. Finally, in Part V, we consider the model checking problems of these logics.
Course Overview

Part I: Modal Logics and Agents
 90 minutes

Part II: Temporal Logics
 60 minutes

Part III: Model Checking I: Temporal Logics
 90 minutes

Part IV: Strategic Logics
 60 minutes

Part V: Model Checking II: Strategic Logics
 60 minutes
Reading Material I

Reading Material II

Outline

1. Modal Logics and Agents
2. Temporal Logics
3. Model Checking Temporal Logics
4. Reasoning about Strategies
5. Model Checking Strategic Logics
1. Modal Logics and Agents

- Propositional Logic
- Basic Modal Logic
- Correspondence Theory
- Epistemic Logic
1.1 Propositional Logic
Syntax

- The **propositional language** is built upon
 - **Propositional symbols**: $p, q, r, \ldots, p_1, p_2, p_3, \ldots$
 - **Logical connectives**: \neg and \lor
 - **Grouping symbols**: $(,)$

- Often we consider only a finite, nonempty set of propositional symbols and refer to it as \mathcal{Prop}.

- **Propositional language** $\mathcal{L}_{PL}(\mathcal{Prop})$:
 $$\varphi ::= p \mid \neg\varphi \mid \varphi \lor \varphi$$

- **Macros**:
 $$\bot ::= p \land \neg p$$
 $$\top ::= \neg \bot$$
 $$\varphi \land \psi ::= \neg (\neg \varphi \lor \neg \psi)$$
 $$\varphi \rightarrow \psi ::= \neg \varphi \lor \psi$$
 $$\varphi \leftrightarrow \psi ::= (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$$
Semantics

- A valuation (or truth assignment) \(v : \text{Prop} \rightarrow \{ t, f \} \) for a language \(\mathcal{L}_{PL}(\text{Prop}) \) is a mapping from the set of propositional constants defined by \(\text{Prop} \) into the set \(\{ t, f \} \).

- Inductively, we define the notion of a formula \(\varphi \) being true or satisfied by \(v \) (denoted by \(v \models \varphi \)):
 \[
 v \models p \text{ iff } v(p) = t \text{ and } p \in \text{Prop},
 \]
 \[
 v \models \neg \varphi \text{ iff not } v \models \varphi,
 \]
 \[
 v \models \varphi \lor \psi \text{ iff } v \models \varphi \text{ or } v \models \psi
 \]

- For a set \(\Sigma \subseteq \mathcal{L}_{PL} \) we write \(v \models \Sigma \) iff \(v \models \varphi \) for all \(\varphi \in \Sigma \).

- We use \(v \not\models \varphi \) instead of not \(v \models \varphi \).
Truth Tables

Truth tables are a conceptually simple way of working with PL (invented by Wittgenstein in 1918).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg p)</th>
<th>(p \lor q)</th>
<th>(p \land q)</th>
<th>(p \rightarrow q)</th>
<th>(p \leftrightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>
Fundamental Semantical Concepts

- If it is possible to find some valuation v that makes φ true, then we say φ is satisfiable.
- If $v \models \varphi$ for all valuations v then we say that φ is valid and write $\models \varphi$. φ is also called tautology.
- A **theory** is a set of formulae: $T \subseteq \mathcal{L}_{PL}$.
- A theory T is called **consistent** if there is a valuation v with $v \models T$.
- A theory T is called **complete** if for each formula φ in the language, $\varphi \in T$ or $\neg \varphi \in T$.

Two simple examples

- Is $p \land \neg b$ satisfiable?
- Is $a \lor \neg a$ valid?
Consequences

Given a theory T we are interested in the following question: **Which facts can be derived from T?** We can distinguish two approaches:

1. **Semantical** consequences, and
2. **Syntactical** inference.

- Let T be a **theory** and φ be a formula. We say that φ is a **semantical consequence of** T if for all valuations v:
 \[v \models T \implies v \models \varphi. \]

- If new facts can be derived from old ones in an **algorithmic** fashion, we say that such a fact is **syntactically derivable**.

- **Inference rules** allow to derive new facts:

\[
(MP) \quad \frac{\varphi}{\varphi \rightarrow \psi}
\]
1.2 Basic Modal Logic
What is a Logic?

We present a framework for thinking about logics as:

- **languages** for describing a problem,
- ways of talking about **relational structures** and **models**.

These are the two key components in the way we will approach logic:

1. **Language:**
 fairly simple, precisely defined, formal languages.

2. **Model** (or **relational structure>):
 simple “world” that the logic talks about.
Various modal logics

- knowledge → epistemic logic,
- beliefs → doxastic logic,
- obligations → deontic logic,
- actions → dynamic logic,
- time → temporal logic,
- and combinations of the above.

Most famous multimodal logics: BDI logics of beliefs, desires, intentions (and time).
Relational Structures

A **relational structure** is given by \((W, \{R_1, \ldots, R_n\})\) and consists of:

- A **non-empty** set \(W\), the elements of which are our **objects** of interest. They are called **points, states, nodes, worlds, times, instants or situations**.
- A **non-empty** set \(\{R_1, \ldots, R_n\}\) of **relations** on \(W\).

Example 1.1 (Finite State Automaton for \(a^n b^m\))

Given the formal language \(a^n b^m\) with \(n, m > 0\). The relational structure is:

Here, \(r\) is the start state and \(t\) is the only final state.
The Basic Modal Language

- Standard propositional logic can be seen as a one-point relational structure.
- But relational structures can describe much more. We can talk about points, lines etc.
- Therefore, we introduce the basic modal language.

We build the basic modal language on top of the propositional language by extending $\mathcal{L}_{PL}(Prop)$ with two new operators:

Possibility and necessity

◊ φ: φ is **possible**
 (We see one or more states where φ holds.)

□ φ: φ is **necessary**
 (In all reachable states φ holds.)
A Language for Relational Structures

Definition 1.2 (Basic Modal Language \mathcal{L}_{BML})

Let \mathcal{P}rop be a set of propositions. The basic modal language $\mathcal{L}_{BML}(\mathcal{P}$rop) consists of all formulae defined by the following grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box \varphi$$

where $p \in \mathcal{P}$rop.

Boolean macros are defined in the standard way. Additionally, we have the dual \Box (called “box”) of \Diamond:

$$\Box \varphi ::= \neg \Diamond \neg \varphi$$
We can talk about attributes by **adding labels** to nodes (e.g. painting them in a particular color).

Example 1.3 (Colored Graph I)

Imagine standing in a node of a colored graph. What can we see?

![Colored Graph Diagram](image-url)
Example 1.4 (Colored Graph II)

We imagine standing in a node of a colored graph. What can we see?

\[\Diamond (\text{black} \land \text{red}) \land \Diamond \Diamond \text{green} \]
Colored Graph II

Example 1.5

\[
\begin{align*}
\text{blue} & \rightarrow \square \text{black} \\
\text{green} & \rightarrow \square \text{black} \\
\text{yellow} & \rightarrow \Diamond \text{yellow}
\end{align*}
\]
Definition 1.6 (Kripke Frame)

A **Kripke frame** is given by $\mathcal{F} = (W, \mathcal{R})$ where
- W is a non-empty set, called set of **domains** or **worlds**,
- $\mathcal{R} \subseteq W \times W$ is a binary relation.

Frames are mainly used to talk about **validities**: They stand for a whole set of models.

Definition 1.7 (Kripke Model)

A **Kripke model** is given by $\mathcal{M} = (W, \mathcal{R}, V)$ where
- (W, \mathcal{R}) is a **Kripke frame**,
- $V : Prop \rightarrow \mathcal{P}(W)$ is called **labeling function** or **valuation**. We also use $V : W \rightarrow \mathcal{P}(Prop)$.

Kripke frames (resp. models) are simply **relational structures** (resp. with labels)!
Example 1.8

Consider the frame $\mathcal{F} = (\{w_1, w_2, w_3, w_4, w_5\}, \mathcal{R})$ where $\mathcal{R}w_i w_j$ iff $j = i + 1$ and $V(p) = \{w_2, w_3\}$, $V(q) = \{w_1, w_2, w_3, w_4, w_5\}$, $V(r) = \emptyset$.
Frames vs. Models?

Frames

Mathematical pictures of ontologies that we find interesting. That is, frames define the fundamental structure of the domain of interest.

For example, we model time as a collection of points ordered by a strict partial order.

Models

Frames are extended by contingent information. That is, models extend the mathematical structure provided by frames by additional information.

Can Kripke models be used to interpret the propositional language?
Formal semantics of \mathcal{L}_{ML}.

Definition 1.9 (Semantics $M, w \models \varphi$)

Let M be a Kripke model, $w \in W_M$, and $\varphi \in \mathcal{L}_{\text{ML}}$. φ is said to be **locally true** or **satisfied in** M and world w, written as $M, w \models \varphi$, if the following holds:

- $M, w \models p$ iff $w \in V_M(p)$ and $p \in \text{Prop}$,
- $M, w \models \neg \varphi$ iff **not** $M, w \models \varphi$,
- $M, w \models \varphi \lor \psi$ iff **or** $M, w \models \varphi$ or $M, w \models \psi$,
- $M, w \models \Diamond \varphi$ iff **there is** a world $w' \in W$ such that Rww' and $M, w' \models \varphi$.

Given a set $\Sigma \subseteq \mathcal{L}_{\text{ML}}$ we write $M, w \models \Sigma$ iff $M, w \models \varphi$ for all $\varphi \in \Sigma$.

What about $\Box \varphi$? ~blackboard
Internal and Local

Satisfaction of formulae is **internal** and **local**!

Internal: Formulae are evaluated inside models at some given world.

Local: Given a world it is only possible to refer to direct successors of this world.

How does first-order logic compare to that?
Some Examples

Example 1.10

$$\mathcal{F} = (\{w_1, w_2, w_3, w_4, w_5\}, \mathcal{R})$$ where $$\mathcal{R}w_iw_j$$ iff $$j = i + 1$$ and $$V(p) = \{w_2, w_3\}$$, $$V(q) = \{w_1, w_2, w_3, w_4, w_5\}$$, $$V(r) = \emptyset$$.

1. $$\mathcal{M}, w_1 \models \Diamond \Box p$$
2. $$\mathcal{M}, w_1 \not\models \Diamond \Box p \rightarrow p$$
3. $$\mathcal{M}, w_2 \models \Diamond (p \land \neg r)$$
4. $$\mathcal{M}, w_1 \models q \land \Diamond (q \land \Diamond (q \land \Diamond (q \land \Diamond q))))$$
5. $$\mathcal{M} \models \Box q$$
Validity and (Global) Satisfaction

We take on a global point of view.

Given a specification like $\varphi := \Box \neg \text{crash}$. In which states should it be true?

Definition 1.11 (Validity)

A formula φ is called **valid** or **globally true** in a model M iff $M, w \models \varphi$ for all $w \in W_M$. We write $M \models \varphi$.

φ is **satisfiable** in M if $M, w \models \varphi$ for some $w \in W_M$.

Analogously, we say that a **set Σ of formulae** is valid (resp. satisfiable) in M iff all formulae in Σ are valid (resp. satisfiable) in M.

Validity and satisfiability are **dual concepts**!
Example 1.12

In which models is the following formula true?

\[\Box(p \to q) \to (\Box p \to \Box q) \]

\[M, w \models \Box(p \to q) \]
iff \[\forall w' (wRw' \Rightarrow M, w' \models p \to q) \]
iff \[\forall w' (wRw' \Rightarrow (M, w' \models p \Rightarrow M, w' \models q)) \]
implies \[\forall w' (wRw' \Rightarrow M, w' \models p) \Rightarrow \]
\[\forall w' (wRw' \Rightarrow M, w' \models q) \]
iff \[M, w \models \Box p \Rightarrow M, w \models \Box q \]
iff \[M, w \models \Box p \to \Box q \]

The formula is true in any frame and hence in any model.
Modal Consequence Relation

Up to now we verified formulae in a given model and state. Often, it is interesting to know whether a property follows from a given set of formulae.

Definition 1.13 (Local Consequence Relation)

Let \mathcal{M} be a class of models, Σ be a set of formulae and φ be a formula.

- φ is a (local) semantic consequence of Σ over \mathcal{M}, written $\Sigma \models_{\mathcal{M}} \varphi$, if for all $M \in \mathcal{M}$ and all $w \in W_M$ it holds that $M, w \models \Sigma$ implies $M, w \models \varphi$.

- If \mathcal{M} is the class of all models we just say that φ is a (local) consequence of Σ and write $\Sigma \models \varphi$.
Frames and Validity

In Example 1.12 we have seen that a formula can be true/false for all valuations. We can speak about **structural properties** ignoring contingent information.

Definition 1.14 (Frame Validity: \(\mathcal{F} \models \varphi \))

Let \(\mathcal{F} \) be a frame and \(\varphi \in \mathcal{L}_{BML} \).

1. **\(\varphi \) is valid in \(\mathcal{F} \) and \(w \in W_{\mathcal{F}} \), written \(\mathcal{F}, w \models \varphi \), if \(M, w \models \varphi \) for all models \(M = (\mathcal{F}, \pi) \) based on \(\mathcal{F} \).**

2. **\(\varphi \) is valid in \(\mathcal{F} \), written \(\mathcal{F} \models \varphi \), if \(\mathcal{F}, w \models \varphi \) for all \(w \in W_{\mathcal{F}} \).**

3. Let \(\mathcal{F} \) be class of frames. \(\varphi \) is said to be **valid in \(\mathcal{F} \)**, if \(\varphi \) is valid in each frame \(\mathcal{F} \in \mathcal{F} \).
Lemma 1.15 (Distribution Axioms)

The two formulae

\[\Box(p \lor q) \rightarrow (\Box p \lor \Box q) \]
\[\Diamond (p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \]

are both valid in all Kripke frames. The last formula is also called axiom K.

Proof.

\[\sim\sim\sim\text{Exercise and Example 1.12.}\]
Example 1.16

Is $\Box \top$ valid in all frames? In which class is the formula valid?

What about $\square \top$? ↦ **blackboard**

Example 1.17

Is $\lozenge \lozenge p \rightarrow \lozenge p$ true in w_1?

In which class of frames is the formula valid? ↦ **blackboard**
Example 1.18

Let \mathcal{M} be the class of transitive models. Then:

1. $\Diamond\Diamond p \models_{\mathcal{M}} \Diamond p$,
2. $\Box p \models_{\mathcal{M}} \Box\Box p$, but
3. $\Box\Box p \models_{\mathcal{M}} \Box p$ does not hold.

Is there a class of models \mathcal{M} for which $\Diamond\Diamond p \models \Diamond p$ holds, but no model in \mathcal{M} is transitive?
1.3 Correspondence Theory
Correspondence Theory

We have learnt that some formulae are valid in particular frames. E.g. $\Diamond \Diamond \varphi \rightarrow \Diamond \varphi$ is valid in all transitive frames. Here, we consider such correspondences systematically.

Definition 1.19 (KDT45)

We assume that we have available one modal operator \Box.

- **K** $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$
- **D** $\neg \Box(p \land \neg p)$
- **T** $\Box p \rightarrow p$
- **4** $\Box p \rightarrow \Box \Box p$
- **5** $\neg \Box p \rightarrow \Box \neg \Box p$

In epistemic logic, e.g., these formulae will have intuitive epistemic properties.
Properties of Frame (1)

We consider properties of the accessibility relations R of frames:

Serial: For all w there is a w' with wRw'.

Reflexive: For all w: wRw.

Transitive: For all w, w', w'': wRw' and $w'Rw''$ implies wRw''.

Euclidean: For all w, w', w'': wRw' and $w'Rw''$ implies $w'Rw''$.

Symmetric: For all w, w': wRw' implies $w'Rw$.

Definition 1.20 (Frame property)

We say a frame $\mathcal{F} = (W, R)$ has property X if its relation R has property X.

Remember Slide 37 where we discussed transitive frames.
Example 1.21

We have

\[\mathcal{F} \models \Box p \rightarrow p \text{ iff } \mathcal{F} \text{ is reflexive.} \]

Let \(\mathcal{F} \) be a frame satisfying \(\Box p \rightarrow p \). That is,

for all \(w \in W, \mathcal{F}, w \models \Box p \rightarrow p \).

This is the case, if for all models \(\mathcal{M} \) over \(\mathcal{F} \) and

for all \(w \in W, \mathcal{M}, w \models \Box p \rightarrow p \).

Which properties must \(\mathcal{R} \) satisfy? Suppose \(\mathcal{R} \) is not reflexive. Then, there is a state \(w' \) with \(\text{not } w' \mathcal{R} w' \). Make \(p \) true at all states of \(W \setminus \{w'\} \). Then, \(\mathcal{M}, w' \not\models \Box p \rightarrow p \) and hence \(\mathcal{F} \not\models \Box p \rightarrow p \). \text{Contradiction!} \sim \text{blackboard}
Now suppose we are given a reflexive frame \mathcal{F} and suppose $\mathcal{F} \not\models \Box p \rightarrow p$.

- Then, there is a model $M = (\mathcal{F}, \pi)$ and a state w, $M, w \not\models \Box p \rightarrow p$.
- That is, $M, w \models \Box p$ and $M, w \not\models p$.
- By reflexivity we have wRw.
- But then, from $M, w \models \Box p$ it follows that $M, w \models p$. **Contradiction!**
- We must have $\mathcal{F} \models \Box p \rightarrow p$.

In other words, axiom T characterises reflexive frames.
Validity in Several Frames (3)

Lemma 1.22 (Appropriate Frames)

Let \((W, \mathcal{R})\) be a Kripke frame. Then the following holds:

K: \((W, \mathcal{R}) \models \Box(p \to q) \to (\Box p \to \Box q)\).

D: \((W, \mathcal{R}) \models \neg \Box(p \land \neg p)\) iff \(\mathcal{R}\) is serial.

T: \((W, \mathcal{R}) \models \Box p \to p\) iff \(\mathcal{R}\) is reflexive.

4: \((W, \mathcal{R}) \models \Box p \to \Box \Box p\) iff \(\mathcal{R}\) is transitive.

5: \((W, \mathcal{R}) \models \neg \Box p \to \Box \neg \Box p\) iff \(\mathcal{R}\) is Euclidean.

B: \((W, \mathcal{R}) \models p \to \Box \Diamond p\) iff \(\mathcal{R}\) is symmetric.

Proof.

\(\Diamond \rightarrow\): Exercise.
Axiomatic Systems

As in classical logic, one can ask about a complete axiom system. Is there a calculus that allows to derive all sentences true in all Kripke models?

Definition 1.23 (System K)

The system K is an extension of the propositional calculus by the axiom

\[K \ (\Box \varphi \land \Box (\varphi \rightarrow \psi)) \rightarrow \Box \psi \]

and the inference rule \(\frac{\varphi}{\Box \varphi} \) (Necessitation).

We also need the duality axiom \(\Box \varphi \leftrightarrow \neg \Diamond \neg \varphi \) (as we introduced \(\Box \) as macro).

Note, \(\varphi \) and \(\psi \) can be substituted by any formula.
Proposition 1.24

Axiom K is equivalent to $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$.

Example 1.25

Proof that $\vdash_K (\Box p \land \Box q) \rightarrow \Box (p \land q)$. \leadsto blackboard
Theorem 1.26 (Sound-/Completeness of K)

System K is sound and complete with respect to arbitrary Kripke models.

- Note that we have **not assumed any properties** of the accessibility relation R: It is just **any** binary relation.

- Assuming that R is an **equivalence** relation, what **additional statements** (axioms) are true in all such Kripke models?
Theorem 1.27 (Sound/complete Subsystems)

Let X be any subset of $\{D, T, 4, 5\}$ and let \mathcal{X} be the subset of $\{\text{serial, reflexive, transitive, euclidean}\}$ corresponding to X. Then system K extended with axioms X is sound and complete with respect to Kripke frames which satisfy properties \mathcal{X}.

For example, we have the following important instance:

Corollary 1.28 (KT45)

System $KT45$ is sound and complete with respect to Kripke frames with an accessibility relation which is an equivalence relation.
Example 1.29

KT45 and KTD45 are both sound and complete with respect to Kripke frames in which the accessibility relation is an equivalence relation.

What does that mean for the properties corresponding to these axioms?

Any reflexive, transitive and euclidean relation is also serial!
Some Exercises

Show that

1. The axiom D follows from $KT45$.
2. Show that $KD45$ is not equivalent to $K45$: axiom D does not follow from $K45$.

One can argue semantically:

- Each Kripke model satisfying the axioms $KT45$, also satisfies the axiom D.
- There is a Kripke model satisfying $K45$ in which D does not hold.
1.4 Epistemic Logic
Interpreting $\Box_i \varphi$ as knowledge

Let us now assume we have several agents i and we interpret $\Box_i \varphi$ as agent i knows that φ. In that case one often writes

$$K_i \varphi \text{ instead of } \Box_i \varphi.$$

Accessibility relation

What does the equivalence relation encode? Incomplete information:

$$wRw' \iff \text{The agent cannot distinguish } w \text{ and } w'. \text{ Both states provide the same information.}$$

Knowledge = Truth in all indistinguishable states
What other properties should hold when interpreting \square as knowledge?

- $\mathbf{K} \quad K(p \rightarrow q) \rightarrow (Kp \rightarrow Kq)$
- $\mathbf{D} \quad \neg K\bot \quad \leadsto \text{consistency}$
- $\mathbf{T} \quad Kp \rightarrow p \quad \leadsto \text{truth}$
- $\mathbf{4} \quad Kp \rightarrow KKp \quad \leadsto \text{positive introspection}$
- $\mathbf{5} \quad \neg Kp \rightarrow K\neg Kp \quad \leadsto \text{negative introspection}$
Example 1.30 (Muddy Children)

- A **group of playing children** is called back by their father. They **gather around him**.
- **Some of them have become dirty:**
 1. they may have mud on their forehead,
 2. children can only see whether others are muddy,
 3. and not if there is any mud on their own forehead.
- **All this is **commonly known**, and the children are **perfect logicians**.
Now the father announces the following:

- **Father:** “At least one of you has mud on his or her forehead.”
- **Father:** “Will those who know whether they are muddy please step forward.”
- If nobody steps forward, father keeps repeating the request.

Question
What happens?
$m_1 \in V(w)$ iff $w = q_{mxx}$
$m_2 \in V(w)$ iff $w = q_{xmx}$
$m_3 \in V(w)$ iff $w = q_{xxm}$
\[M, q_{mmc} \models m_1 \land m_2 \land \neg m_3 \]
\[M, q_{mmc} \models m_1 \land m_2 \land \neg m_3 \]
\[M, q_{mmc} \models \neg K_1 m_1 \land K_1 m_2 \]
1 Modal Logics and Agents
1.4 Epistemic Logic

\[\mathcal{M}, q_{mmc} \models m_1 \land m_2 \land \neg m_3 \]

\[\mathcal{M}, q_{mmc} \models \neg K_1 m_1 \land K_1 m_2 \]

\[\mathcal{M}, q_{mmc} \models K_1 K_3 m_2 \land K_1 \neg K_2 m_2 \]
1 Modal Logics and Agents
1.4 Epistemic Logic

\[M, q_{mmc} \models m_1 \land m_2 \land \neg m_3 \]
\[M, q_{mmc} \models \neg K_1 m_1 \land K_1 m_2 \]
\[M, q_{mmc} \models K_1 K_3 m_2 \land K_1 \neg K_2 m_2 \]
\[\ldots \]
Father: “At least one is muddy.”

\[\neg K_1 m_1 \land \neg K_2 m_2 \land \neg K_3 m_3 \]
Father: “At least one is muddy.”

\[\neg K_1 m_1 \land \neg K_2 m_2 \land \neg K_3 m_3 \]
Father (1): “If you know that you’re muddy, raise your hand.”

Nothing happens.
Father (2): “If you know that you’re muddy, raise your hand.”

The kids see that nobody has raised their hands after (1)!

Children with mud can eliminate worlds...
Father (2): “If you know that you’re muddy, raise your hand.”

The kids see that nobody has raised their hands after. (1)!

Children with mud can eliminate worlds...
Father (2): “If you know that you’re muddy, raise your hand.”

The kids see that nobody has raised their hands after (1)!

Children with mud can eliminate worlds...

What happens?

\[\neg \text{Kids 1 and 2 raise their hands:} \quad K_1 m_1 \land K_2 m_2 \land \neg K_3 m_3 \]
Interpreting \(\Box \) as belief

Up to now we were thinking of \(\Box_i \) as agent \(i \) knows that \(\varphi \). What if we interpret the operator as belief?

Under such an interpretation axiom \(T \) is usually not assumed to hold. But all other axioms make sense.

Definition 1.31 (System KD45)

Axiom system KD45 is called the standard logic of beliefs. Axiom \(K \) is called logical omniscience, axiom \(D \) is called consistency, axiom 4 (resp. axiom 5) is called positive (resp. negative) introspection.
2. Temporal Logics

- Linear-Time Logic
- Branching-Time Logics
- References
2.1 Linear-Time Logic
Reasoning about Time

- The **accessibility relation** represents **time**.
- Time: **linear vs. branching**.

![Diagram showing linear and branching time structures]
Temporal logic was originally developed in order to represent tense in natural language.

Within Computer Science, it has achieved a significant role in the formal specification and verification of concurrent and distributed systems.

Much of this popularity has been achieved because a number of useful concepts can be formally, and concisely, specified using temporal logics, e.g.

- safety properties
- liveness properties
- fairness properties
Typical temporal operators

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>◯φ</td>
<td>φ is true in the next moment in time</td>
</tr>
<tr>
<td>□φ</td>
<td>φ is true in all future moments</td>
</tr>
<tr>
<td>◊φ</td>
<td>φ is true in some future moment</td>
</tr>
<tr>
<td>φ U ψ</td>
<td>φ is true until the moment when ψ becomes true</td>
</tr>
</tbody>
</table>

□((¬passport ∨ ¬ticket) → ◯¬board_flight)

send(msg, rcvr) → ◊receive(msg, rcvr)
Safety Properties

“something bad will not happen”
“something good will always hold”

Typical examples:

\(\square \neg bankrupt\)
\(\square fuelOK\)
and so on ...

Usually: \(\square \neg\)....
Liveness Properties

“something good will happen”

Typical examples:

◊rich

$\text{power_on} \rightarrow \Diamond \text{online}$

and so on …

Usually: ◊….
Fairness Properties

Combinations of safety and liveness possible:

\[\Diamond \Box \text{dead} \]
\[\Box (\text{request_taxi} \rightarrow \Diamond \text{arrive_taxi}) \quad \rightsquigarrow \text{fairness} \]

Strong fairness

“If something is requested then it will be allocated”:

\[\Box (\text{attempt} \rightarrow \Diamond \text{success}), \]
\[\Box \Diamond \text{attempt} \rightarrow \Box \Diamond \text{success}. \]

- Scheduling processes, responding to messages, etc.
- No process is blocked forever, etc.
Linear-Time Temporal Logic

- Reasoning about a **particular computation** of a system.

- Time is **linear**: just one possible future moment!

- **Models**: paths (e.g. obtained from Kripke structures)

 \[\lambda : \mathbb{N}_0 \rightarrow Q. \]
The **language** $L_{LTL}(Prop)$ is given by all formulae generated by the following grammar, where $p \in Prop$ is a proposition:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi U \varphi \mid \Diamond \varphi.$$

The additional operators

- \Diamond **(now or sometime from now on)**
- \Box **(always from now on)**

can be defined as **macros**:

$$\Diamond \varphi \equiv T U \varphi \quad \text{and} \quad \Box \varphi \equiv \neg \Diamond \neg \varphi$$

The standard Boolean connectives $\top, \bot, \lor, \rightarrow, \leftrightarrow$ are defined in their usual way.
Models of LTL

The semantics is given over paths, which are infinite sequences of states from Q, and a standard labelling function $\pi : Q \rightarrow \mathcal{P}(\mathsf{Prop})$ that determines which propositions are true at which states.

Definition 2.2 (Path λ)

- A path λ over a set of states Q is an infinite sequence from Q^ω. We also identify it with a mapping $\mathbb{N}_0 \rightarrow Q$.

- We use
 - $\lambda[i]$ to denote the ith position on path λ (starting from $i = 0$) and
 - $\lambda[i, \infty]$ to denote the subpath of λ starting from i ($\lambda[i, \infty] = \lambda[i] \lambda[i + 1] \ldots$).
\[\lambda = q_1q_2q_3 \ldots \in Q^\omega \]

Definition 2.3 (Semantics of LTL)

Let \(\lambda \) be a **path** and \(\pi \) be a **labelling function** over \(Q \). The semantics of LTL, \(\models^{\text{LTL}} \), is defined as follows:

- \(\lambda, \pi \models^{\text{LTL}} p \) iff \(p \in \pi(\lambda[0]) \) and \(p \in \mathcal{P}rop \);
- \(\lambda, \pi \models^{\text{LTL}} \neg \varphi \) iff **not** \(\lambda, \pi \models^{\text{LTL}} \varphi \) (we will also write \(\lambda, \pi \not\models^{\text{LTL}} \varphi \));
- \(\lambda, \pi \models^{\text{LTL}} \varphi \land \psi \) iff \(\lambda, \pi \models^{\text{LTL}} \varphi \) and \(\lambda, \pi \models^{\text{LTL}} \psi \);
- \(\lambda, \pi \models^{\text{LTL}} \Box \varphi \) iff \(\lambda[1, \infty], \pi \models^{\text{LTL}} \varphi \); and
- \(\lambda, \pi \models^{\text{LTL}} \varphi U \psi \) iff **there is an** \(i \in \mathbb{N}_0 \) **such that** \(\lambda[i, \infty], \pi \models \psi \) **and** \(\lambda[j, \infty], \pi \models^{\text{LTL}} \varphi \) **for all** \(0 \leq j < i \).
Other temporal operators

\[\lambda, \pi \models \diamond \varphi \iff \lambda [i, \infty], \pi \models \varphi \text{ for some } i \in \mathbb{N}_0; \]
\[\lambda, \pi \models \square \varphi \iff \lambda [i, \infty], \pi \models \varphi \text{ for all } i \in \mathbb{N}_0; \]

Exercise

Prove that the semantics does indeed match the definitions

\[\diamond \varphi \equiv T U \varphi \text{ and } \square \varphi \equiv \neg \diamond \neg \varphi. \]
\(\lambda, \pi \models \Diamond pos_1 \)

\[\lambda' = \lambda[1, \infty], \pi \models pos_1 \]
\[pos_1 \in \pi(\lambda'[0]) \]
\[\lambda, \pi \models \Box \Diamond pos_1 \text{ iff} \]
\[\lambda[0, \infty], \pi \models \Diamond pos_1 \text{ and} \]
\[\lambda[1, \infty], \pi \models \Diamond pos_1 \text{ and} \]
\[\lambda[2, \infty], \pi \models \Diamond pos_1 \text{ and} \]
\[\ldots \]
2 Temporal Logics

2.1 Linear-Time Logic

Representation of paths

- Paths are infinite entities.
- They are theoretical constructs.
- We need a finite representation!
- We consider paths in a Kripke structure.

We use a (pointed) Kripke model M, q and consider the problem whether an L_{LTL}-formula holds on all paths of M starting in q.
Definition 2.4 (M-path, Λ_M(q))

An M-path (or computation) is given by λ ∈ Q_ω^M such that subsequent states are connected by transitions from R_M. We use the same notation for these paths as introduced above. For q ∈ Q we use Λ_M(q) to denote the set of all M-paths starting in q and we define Λ_M as ∪_{q ∈ Q} Λ_M(q).

The subscript “M” is often omitted and we refer to an M-path simply as path when clear from context.
Computational vs. behavioural structure

System

Computational str.

Nils Bulling and Jürgen Dix · Model Checking Temporal and Strategic Logics
EASSS, 2010
Important!

The **behavioural structure** is usually **infinite**! Here, it is an infinite tree. We say it is the \(q_0 \)-unraveling of the model.
Some Exercises

Example 2.5

Formalise the following as \textbf{LTL} formulae:

1. \(r \) should never occur.
2. \(r \) should occur exactly once.
3. At least once \(r \) should directly be followed by \(s \).

\(\blackboard \)
2.2 Branching-Time Logics
Branching Time

- **CTL, CTL**: Computation Tree Logics.
- Reasoning about possible computations of a system.
- Time is branching: We want all alternative computations included!

Models: states (time points, situations), transitions (changes). (↔ Kripke models).

Paths: courses of action, computations. (↔ LTL)
- **Path quantifiers:** A (for all paths), E (there is a path);

- **Temporal operators:** \bigcirc (nexttime), \Diamond (sometime), \square (always) and \mathcal{U} (until);

- **CTL:** each temporal operator must be immediately preceded by exactly one path quantifier;

- **CTL*:** no syntactic restrictions.
Definition 2.6 (L_{CTL^*} [Emerson and Halpern, 1986])

The **language** $L_{CTL^*}(Prop)$ is given by all formulae generated by the following grammar:

$$
\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid E\gamma
$$

where

$$
\gamma ::= \varphi \mid \neg \gamma \mid \gamma \land \gamma \mid \gamma U \gamma \mid \Box \gamma
$$

and $p \in Prop$. Formulae φ (resp. γ) are called **state** (resp. **path**) formulae.

We use the same abbreviations as for L_{LTL}.
The L_{CTL^*}-formula $E\Diamond \varphi$, for instance, ensures that **there is at least one path** on which φ holds at some (future) time moment.

The formula $A\Diamond \Box \varphi$ states that φ holds **almost everywhere**. More precisely, on all paths it always holds from some future time moment.

L_{CTL^*}-formulae do not only talk about temporal patterns on a given path, **they also quantify** (existentially or universally) over such paths.

The logic is complex! For practical purposes, a fragment with **better computational properties** is often sufficient.
Definition 2.7 (\mathcal{L}_{CTL} [Clarke and Emerson, 1981])

The **language** $\mathcal{L}_{CTL}(Prop)$ is given by all formulae generated by the following grammar, where $p \in Prop$ is a proposition:

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid E(\phi U \phi) \mid E\Box \phi.$$

For example, $A\Box E\Box p$ is a \mathcal{L}_{CTL}-formula whereas $A\Box \Diamond p$ is not.
We define the **Boolean connectives** as usual. It remains to define the other temporal operators. What about $\diamondsuit \varphi \equiv \neg \Box \neg \varphi$?

We introduce the following macros:

- $\diamondsuit \varphi \equiv T \mathcal{U} \varphi$,
- $A \bigcirc \varphi \equiv \neg E \bigcirc \neg \varphi$,
- $A \Box \varphi \equiv \neg E \diamondsuit \neg \varphi$, and
- $A \varphi \mathcal{U} \psi \equiv \ldots$ Exercise!
Example

Are the following CTL^* or CTL formulae? What do the formulae express?

1. $E\Diamond A\bigcirc shutdown$
2. $E\Diamond \bigcirc shutdown$
3. $A\square \Diamond rain$
4. $A\square A\Diamond rain$ (Is it different from (3)?)
5. $E\Diamond \square broken$
The semantics is given over Kripke models with a **serial** transition relation (time flows forever!).

Definition 2.8 (Semantics \(\models^{\text{CTL}^*} \))

Let \(M \) be a Kripke model, \(q \in Q \) and \(\lambda \in \Lambda \). The **semantics** of \(L_{\text{CTL}^*} \)- and \(L_{\text{CTL}} \)-formulae is given by the satisfaction relation \(\models^{\text{CTL}^*} \) for state formulae by:

- \(M, q \models^{\text{CTL}^*} p \iff \lambda[0] \in \pi(p) \) and \(p \in \text{Prop} \);
- \(M, q \models^{\text{CTL}^*} \neg \varphi \iff M, q \not\models^{\text{CTL}^*} \varphi \);
- \(M, q \models^{\text{CTL}^*} \varphi \land \psi \iff M, q \models^{\text{CTL}^*} \varphi \) and \(M, q \models^{\text{CTL}^*} \psi \);
- \(M, q \models^{\text{CTL}^*} \text{E}\varphi \iff \) **there is a path** \(\lambda \in \Lambda(q) \) such that \(M, \lambda \models^{\text{CTL}^*} \varphi \).
and for **path formulae** by:

- $M, \lambda \models_{\text{CTL}^*} \varphi$ iff $M, \lambda[0] \models_{\text{CTL}^*} \varphi$;
- $M, \lambda \models_{\text{CTL}^*} \neg \gamma$ iff $M, \lambda \not\models_{\text{CTL}^*} \gamma$;
- $M, \lambda \models_{\text{CTL}^*} \gamma \land \delta$ iff $M, \lambda \models_{\text{CTL}^*} \gamma$ and $M, \lambda \models_{\text{CTL}^*} \delta$;
- $M, \lambda \models_{\text{CTL}^*} \Box \gamma$ iff $\lambda[1, \infty], \pi \models_{\text{CTL}^*} \gamma$; and
- $M, \lambda \models_{\text{CTL}^*} \gamma U \delta$ iff there is an $i \in \mathbb{N}_0$ such that $M, \lambda[i, \infty] \models_{\text{CTL}^*} \delta$ and $M, \lambda[j, \infty] \models_{\text{CTL}^*} \gamma$ for all $0 \leq j < i$.

Is this semantics over paths necessary for CTL?
State-based semantics for CTL

- \(M, q \models_{\text{CTL}} p \iff q \in \pi(p); \)
- \(M, q \models_{\text{CTL}} \neg \varphi \iff M, q \not\models_{\text{CTL}} \varphi; \)
- \(M, q \models_{\text{CTL}} \varphi \land \psi \iff M, q \models_{\text{CTL}} \varphi \) and \(M, q \models_{\text{CTL}} \psi; \)
- \(M, q \models_{\text{CTL}} \exists \Box \varphi \iff \text{there is a path } \lambda \in \Lambda(q) \text{ such that } M, \lambda[1] \models_{\text{CTL}} \varphi; \)
- \(M, q \models_{\text{CTL}} \exists \Diamond \varphi \iff \text{there is a path } \lambda \in \Lambda(q) \text{ such that } M, \lambda[i] \models_{\text{CTL}} \varphi \text{ for every } i \geq 0; \)
- \(M, q \models_{\text{CTL}} \exists \varphi U \psi \iff \text{there is a path } \lambda \in \Lambda(q) \text{ such that } M, \lambda[i] \models_{\text{CTL}} \psi \text{ for some } i \geq 0, \text{ and } M, \lambda[j] \models_{\text{CTL}} \varphi \text{ for all } 0 \leq j < i. \)
Example 2.9 (Robots and Carriage)

Two robots push a carriage from opposite sides.

Carriage can move clockwise or anticlockwise, or it can remain in the same place.

3 positions of the carriage.

We label the states with propositions pos_0, pos_1, pos_2, respectively, to allow for referring to the current position of the carriage in the object language.
Figure 2: Two robots and a carriage: A schematic view (left) and a transition system M_0 that models the scenario (right).
\[M_0, q_0 \models_{CTL} E \Diamond \text{pos}_1: \text{In state } q_0, \text{there is a path such that the carriage will reach position } 1 \text{ sometime in the future.} \]

The same is not true for all paths, so we also have:
\[M_0, q_0 \not\models_{CTL} A \Diamond \text{pos}_1. \]

It becomes more interesting if abilities of agents are considered \(\rightsquigarrow ATL \).
Example: Rocket and Cargo

- A **rocket** and a **cargo**.
- The rocket can be moved between London (proposition roL) and Paris (proposition roP).
- The cargo can be in London (caL), Paris (caP), or inside the rocket (caR).
- The rocket can be moved only if it has its fuel tank full ($fuelOK$).
- When it moves, it consumes fuel, and $nofuel$ holds after each flight.
Example: Rocket and Cargo

\[\text{roL} \rightarrow \text{E} \text{\Diamond roP} \]

\[\text{A}\square(\text{roL} \lor \text{roP}) \]

\[\text{roL} \rightarrow \text{A}\bigcirc(\text{roP} \rightarrow \text{nofuel}) \]
Example: Rocket and Cargo

\[E \diamond caP \]
2.3 References
Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713.

Temporal and modal logic.

Reasoning about Knowledge.
MIT Press.

Model Checking Abilities of Agents: A Closer Look.
Wojtek Jamroga and Jürgen Dix (2005).
Do Agents Make Model Checking Explode (Computationally)?

Semantical analysis of modal logic I. Normal propositional calculi.

Semantical considerations on modal logic.
3. Model Checking Temporal Logics

- Motivation
- The Model Checking Problem and CTL
- Büchi Automata
- Model Checking LTL
- Model Checking CTL*
- References
3.1 Motivation
Why do we need verification methods?

AT&T Telephone Network Outage (1990)

- Problem in New York City: **9 hour outage** of large parts of **US telephone network**.
- Costs: **several 100 million $**.
- Source: **wrong interpretation of a break statement in C**.

Acknowledgment: The following presentation is partly based on the book “Principles of Model Checking” by Christel Baier and Joost-Pieter Katoen.
Why do we need verification methods?

Pentium FDIV BUG (1994)

(FDIV: Floating point division unit)

- Incorrect results.
- Costs: 500 million $ and image loss.
- Source: flaw in realisation of floating-point division.
Why do we need verification methods?

Ariane 5 Desaster (1996)

- Crash of Ariane 5-missle.
- Costs: > 500 million $.
- Source: flaw in data conversion from a 64-bit floating point to a 16-bit signed integer.

What are the lessons learned?

~~ Verification may pay off!

In such cases the extra costs and efforts put into proper verification techniques may be cheaper as the results of an error.
Why do we need verification methods?

- Software becomes **larger**.
- Use in **safety-critical** systems, important domains.
- Increasing need for **reliable** software.

Why?

- Errors can be **costly and fatal** (Ariane-5 launch, stock market systems,...).
- **Mass production** of products (errors are expensive, computer chips,...).
Formal Verification Techniques

- **Testing and reviewing** (⇝ non-formal methods)

- **Deductive methods** (Hoare Calculus), code integration (⇝ undecidable, expertise during programming necessary)

- **Model checking** (⇝ how is the correct model obtained?)
What is Model Checking

- System
- Requirement
- Formal model
- Formal specification
- Model checker
- True
- False
- Counterexample
- Flaw in system
3.2 The Model Checking Problem and CTL
What is Model Checking

... problem

I have a

... a property to be verified

φ = 〈1, 2〉◇ halt

Logical (formal) specification

Formal model

Let's MODEL CHECK....

COMPLEXITY?
What is Model Checking? (1)

- **Model checking** refers to the problem to determine whether a given formula φ is satisfied in a state q of model M.

- **Local model checking** is the decision problem that determines membership in the set $MC(\mathcal{L}, \text{Struc}, \models) := \{(M, q, \varphi) \in \text{Struc} \times \mathcal{L} \mid M, q \models \varphi\}$, where
 - \mathcal{L} is a logical language,
 - Struc is a class of (pointed) models for \mathcal{L} (i.e. a tuple consisting of a model and a state), and
 - \models is a **semantic satisfaction relation** compatible with \mathcal{L} and Struc.
What is Model Checking? (2)

- It is often useful to compute the set of states in M that satisfy formula φ instead of checking if φ holds in a particular state. This variant of the problem is known as global model checking.

- Here: The complexities of local and global model checking coincide.

- We are interested in the decidability and the computational complexity of determining whether an input instance (M, q, φ) belongs to $MC(\ldots)$.
Input size

Important

The **complexity** is always relative to the **size of the input**!

- That is, the **size** of the **representation of the model** and the **representation of the formula** that we use.
- In order to establish the complexity, it is necessary to fix how we **represent** the input and how we **measure** its size.

Remark 3.1

Sometimes it makes sense to only consider the size of the model or of the formula.

In this course, we **always consider the size of the model and of the formula**.
Input size

- The size of the model ($|M|$) is given by the number of transitions in M, and the size of the formula ($|\varphi|$) is given by its length (i.e., the number of elements it is composed of, apart from parentheses).

Why do we not consider the number of states in a model?

For example, the formula $\text{A}\Box (pos_0 \lor pos_1)$ has length 5.

Be careful...

...if numbers are involved!
Model Checking LTL/CTL

Let M be a **Kripke model** and q be a **state** in the model.

- **Model checking** a $\mathcal{L}_{CTL}/\mathcal{L}_{CTL^*}$-formula φ in M, q means to determine whether $M, q \models \varphi$, i.e., whether φ holds in M, q.

- For LTL, checking $M, q \models \varphi$ means that we check the **validity** of φ in the pointed model M, q, i.e., whether φ holds on all the paths in M that start from q.

- That is, it is **equivalent to CTL** model checking of a formula $A\varphi$ in M, q.
Model Checking CTL

Let the function \(\text{pre}(Q') \) return all states such that there is a transition leading to a state in \(Q' \).

The following algorithm is based on the following fixed-point characterisations:

\[
E \Box \varphi \iff \varphi \land E \Diamond E \Box \varphi,
\]

\[
E \varphi_1 U \varphi_2 \iff \varphi_2 \lor (\varphi_1 \land E \Diamond E \varphi_1 U \varphi_2).
\]
Model Checking CTL

function \(mcheck(\mathcal{M}, \varphi) \).

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi \equiv p)</td>
<td>return ({ q \in Q \mid p \in \pi(q) })</td>
</tr>
<tr>
<td>(\varphi \equiv \neg \psi)</td>
<td>return (Q \setminus mcheck(\mathcal{M}, \psi))</td>
</tr>
<tr>
<td>(\varphi \equiv \psi_1 \land \psi_2)</td>
<td>return (mcheck(\mathcal{M}, \psi_1) \cap mcheck(\mathcal{M}, \psi_2))</td>
</tr>
<tr>
<td>(\varphi \equiv E \bigcirc \psi)</td>
<td>return (pre(mcheck(\mathcal{M}, \psi)))</td>
</tr>
</tbody>
</table>
| \(\varphi \equiv E \bigboxdot \psi \) : | \(Q_1 := Q; \quad Q_2 := Q_3 := mcheck(\mathcal{M}, \psi); \)
| | while \(Q_1 \not\subseteq Q_2 \) do \(Q_1 := Q_1 \cap Q_2; \quad Q_2 := pre(Q_1) \cap Q_3 \) od; return \(Q_1 \) |
| \(\varphi \equiv E \psi_1 \cup \psi_2 \) : | \(Q_1 := \emptyset; \quad Q_2 := mcheck(\mathcal{M}, \psi_2); \quad Q_3 := mcheck(\mathcal{M}, \psi_1); \)
| | while \(Q_2 \not\subseteq Q_1 \) do \(Q_1 := Q_1 \cup Q_2; \quad Q_2 := pre(Q_1) \cap Q_3 \) od; return \(Q_1 \) |

Figure 3: CTL-model checking algorithm
Model Checking CTL

Theorem 3.2

(CTL [Clarke et al., 1986, Schnoebelen, 2003])

Model checking CTL is \(\textbf{P-complete} \), and can be done in time \(O(|M| \cdot |\varphi|) \), where \(|M| \) is given by the number of transitions.

Proof

The algorithm determining the states in a model at which a given formula holds is presented in Figure 3 on Slide 124. The lower bound (P-hardness) can be for instance proven by a reduction of the Circuit-Value-Problem [Schnoebelen, 2003].
Model Checking LTL and CTL

Often, one is only interested in the complexity class of model checking and not in a specific algorithm and its detailed complexity. Is there a more convenient way to determine the complexity without working out the algorithm?

- Automata-theory to build algorithms.
- Unified approach.
- Automata are well studied.
- Simplifies complexity analysis.
- Usually, one is only interested in a complexity class. It is very time-demanding to come up with a good algorithm.
3.3 Büchi Automata
Büchi Automata

- We would like to use **finite automata** to solve the model checking problem.

- Finite automata (on finite words) accept only **finite words** but **paths are infinite**.

- We need to extend the model to **finite automata that accept infinite words**.

How can we accept infinite words?
Definition 3.3 (ω-automaton)

An \(\omega \)-automaton is a quintuple

\[
A = (Q, \Sigma, \Delta, q_I, C)
\]

where

1. \(Q \) is a finite set of states;
2. \(\Sigma \) is a finite alphabet;
3. \(\Delta \subseteq Q \times \Sigma \times Q \) a transition relation;
4. \(q_I \) is the initial state; and
5. \(C \) an acceptance component (which is specialised in the following).

The crucial point is the acceptance condition!
Depending on the acceptance condition various types of automata arise (e.g., Büchi, Rabin, Muller automata).

Definition 3.4 (Run)

A run \(\rho = \rho(0)\rho(1) \cdots \in Q^\omega \) of \(A \) on a word \(w = w_1w_2 \cdots \in \Sigma^\omega \) is an infinite sequence of states of \(A \) such that:

1. \(\rho(0) = q_I \)
2. \(\rho(i) \in \Delta(\rho(i - 1), w_i) \) for \(i \geq 1 \).

We define \(\text{Inf}(\rho) \) as the set of all states that occur infinitely often on \(\rho \); that is,

\[
\text{Inf}(\rho) = \{ q \in Q \mid \forall i \exists j (j > i \land \rho(j) = q) \}
\]
Definition 3.5 (Büchi automaton)

A Büchi automaton is a ω-automaton

$$A = (Q, \Sigma, \Delta, q_I, F)$$

where $F \subseteq Q$ with the following acceptance condition: A accepts $w \in \Sigma^\omega$ if, and only if, there is a run ρ of A such that

$$\text{Inf}(\rho) \cap F \neq \emptyset$$

Thus, such an automaton accepts all words such that some state from F is visited infinitely often on a corresponding run.
Definition 3.6 (Acceptable language)

The language accepted by A, $L(A)$, consists of all words accepted by A. That is,

$$L(A) = \{ w \in \Sigma^\omega \mid A \text{ accepts } w \}.$$

A language is said to be (Büchi) acceptable if there is a Büchi automaton that accepts it.

Remark 3.7 (Other automata types)

Other acceptance conditions yield different automata types: Rabin automata, Muller automata.
Example 3.8

Is there a Büchi Automaton that accepts the following language L over $\Sigma = \{a, b, c\}$?

$$L = \{w \in \Sigma^\omega \mid w \text{ contains \textbf{infinitely} many } a \text{ or } b \text{ and only \textbf{finitely} many } c \}$$

⇝ blackboard
Example 3.9

Is there a Büchi Automaton that accepts the following language L over $\Sigma = \{a, b\}$?

$$L = \{ w \in \Sigma^\omega \mid w \text{ ends with } a^\omega \text{ or } (ab)^\omega \}$$
Proposition 3.10 (Closure properties)

1. Büchi acceptable languages are closed under union, intersection, and negation.

2. If A is a regular language with $\epsilon \not\in A$, then, A^ω is Büchi acceptable.

3. If A is a regular language and B is Büchi recognizable, then AB is Büchi acceptable.
Proof sketch

1. Union: Nondeterministically guess which automata should be executed. ⇒ Exercise

Intersection: Product automaton yields a generalized Büchi automaton. The acceptance set is given by \(\{F_1 \times S_2, S_1 \times F_2\} \). ⇒ Exercise

2. Complementation: This part is non-trivial and cannot be done in the scope of this lecture.

3. Idea: Connect transitions to final states also with the initial state ⇒ Exercise

4. Idea: Connect transitions to final states of the finite automaton with the initial state of the Büchi automaton. ⇒ Exercise
Theorem 3.11 (Characterization Theorem)

A language L is **Büchi acceptable** if, and only if, there are finitely many regular languages U_1, \ldots, U_n and V_1, \ldots, V_n such that

$$L = \bigcup_{i=1,\ldots,n} U_i(V_i)^\omega$$

This shows that any language $L \neq \emptyset$ acceptable by a Büchi automaton contains an **ultimately periodic word**.

Example 3.12

For the language $L = \{w \in \Sigma^\omega \mid w \text{ ends with } a^\omega \text{ or } (ab)^\omega\}$ from Example 3.9 we have that $L = \Sigma^*\{a\}^\omega \cup \Sigma^*\{ab\}^\omega$.
Proof of Theorem 3.11

“⇒”: Let \(W(q, q') = \{ w \in \Sigma^* \mid q \xrightarrow{w} q' \} \). Each language \(W(q, q') \) is regular. Then,

\[
L(A) = \bigcup_{q \in Q_f} W(q_I, q)(W(q, q))^\omega.
\]

“⇐”: Let \(L = \bigcup_{i=1, \ldots, n} U_i(V_i)^\omega \) where each \(U_i, V_i \) is regular. By Proposition 3.10 we have that \((V_i)^\omega \) and \(U_i(V_i)^\omega \) are Büchi recognizable. Thus also their finite union.
Definition 3.13 (Generalized Büchi automaton)

A **generalized Büchi automaton** is an ω-automaton

$$A = (Q, \Sigma, \Delta, q_I, F)$$

where $F \subseteq \mathcal{P}(Q)$ with the following **acceptance condition**:

A accepts $w \in \Sigma^\omega$ if, and only if, there is a run ρ of A such that for each $F_i \in F$

$$\text{Inf}(\rho) \cap F_i \neq \emptyset.$$

Thus, such an automaton accepts all words such that some state from each F_i is visited infinitely often on a corresponding run.
We will use generalized Büchi automata for model checking LTL. How is the relation between Büchi and generalized Büchi automata?

Proposition 3.14 (Generalized Büchi \implies Büchi)

For each generalized Büchi automaton one can construct an equivalent Büchi automaton.

Proof.

Idea: Consider state-tuples: $S \times \{1, \ldots, k\}$. If the GBA moves to the next acceptance set a counter is incremented (modulo k). Then, a run visits states from each F_i infinitely often iff states from $F_1 \times \{1\}$ appear infinitely often. \square
Proof ctd.

Let $A = (\Sigma, S, \Delta, S_0, \{F_1, \ldots, F_n\})$ be a generalized Büchi automaton. We construct the Büchi Automaton $A' = (\Sigma, S', \Delta', S'_0, F')$:

- $S' = S \times \{1, \ldots, n\}$;
- $S'_0 = S_0 \times \{1\}$;
- $((s, j), a, (t, i)) \in \Delta'$ iff

 $$(s, a, t) \in \Delta \text{ and } \begin{cases} i = j, & \text{if } s \not\in F_j; \\ i = (j + 1) \mod k, & \text{if } s \in F_j; \end{cases}$$

- $F' = F_1 \times \{1\}$.

Proof ctd.

It remains to prove that both automata accept the same languages. We present the main ideas.

“⇒“: Let A be a GBA that accepts the word w. Then, there is a run ρ such that states from each F_i, $i = 1, \ldots, k$, occur infinitely often on ρ. That is, there is an infinite subsequence $(q_1 \ldots q_k)^\omega$ of ρ such that $q_i \in F_i$. Hence, the state $(q_1, 1)$ is visited infinitely often in the automaton A'.

“⇐“: Let A' accept the word w. Then, some state $(q_1, 1)$ with $q_1 \in F_1$ is visited infinitely often. After it has been visited once the automaton is in a state $(q, 2)$ and can only return to $(q', 1)$ if some state $q \in F_2$ is visited, some from F_3 and so on is visited.
Example 3.15

\[F_1 \]

\[F_2 \]

\[q_0 \]

\[q_1 \]

\[q_{0,1} \]

\[q_{1,1} \]

\[q_{0,2} \]

\[q_{1,2} \]

\[a \]

\[b \]

\[a \]

\[a \]

\[b \]

\[b \]

\[b \]
Checking Emptiness

For the model checking algorithms we need to check whether the language of a Büchi automaton is empty.

Definition 3.16 (Graph reachability)

Let $G = (V, E)$ be graph. Given two vertices $u, v \in V$ the graph-reachability problem is the question whether v is reachable from u.

Theorem 3.17 ([Jones, 1977, Jones, 1975])

The graph-reachability problem is $NLOGSPACE$-complete under logspace-reductions.
Theorem 3.18 ([Emerson and Lei, 1987])

The emptiness problem for Büchi automata is solvable in linear time and in nondeterministic logarithmic space.

Proof

We check whether there is some ultimately periodic word by finding an accepting state reachable from the initial state and form itself. The following algorithm runs in non-deterministic logarithmic space:

1. **Guess** an accepting state \(r \), and
2. **check** whether \(\text{reach}(r, r) \).
How does \(\text{reach}(x, y) \) work?

1. Chose some \(x \)-successor \(x' \) (non-determinism!).
2. Return “yes”, if \(x' = y \) else \(\text{reach}(x', y) \).

Hardness is shown by a reduction of the \(NLOGSPACE \)-complete problem of graph reachability from Definition 3.16. Given \(G, u, v \), \(\text{transform } G \text{ to a Büchi automaton} \) with initial state \(u \) and final state \(v \) and add a loop to \(v \).

\(v \text{ reachable from } u \text{ in } G \) iff automaton non-empty.
3.4 Model Checking LTL
Automata and Model Checking

How can we use automata for the model checking problem?

The basic idea is the following:

1. We build an automaton A_{M,q_0} accepting the paths of model M, q_0.
2. We build an automaton A_φ accepting all paths satisfying φ.
3. Then, we have:

 $$M \models \varphi \text{ iff } L(A_{M,q_0}) \subseteq L(A_\varphi).$$
Büchi Automata and Kripke Models

We can relate a Kripke model $\mathcal{M} = (Q, R, \pi)$ and a state $q_0 \in Q$ to a Büchi automaton $A_{\mathcal{M}, q_0} = (\Sigma, Q, q_0, \Delta, Q)$ where

- $\Sigma = \mathcal{P}(\text{Prop})$: Each input symbol is a set of propositions,
- $q' \in \Delta(q, w)$ iff $((q, q') \in R \text{ and } w = \pi(q))$,
- all states being accepting states (i.e. each infinite run of the automaton is accepting).

Important

The automaton accepts words over $\mathcal{P}(\text{Prop})$ but paths are sequences of states! What now?
LTL Semantics Revisited

The truth of $\lambda, \pi \models \varphi$ does **only** depend on the propositions true at states.

Clearly, for path λ, λ' we have the following:

If **for all** $i \in \mathbb{N}_0$

$\pi(\lambda[i]) = \pi(\lambda'[i])$ then $\lambda, \pi \models \varphi$ iff $\lambda', \pi \models \varphi$.

Hence, we can also use the infinite word

$\lambda^\pi := \pi(\lambda[0])\pi(\lambda[1])\pi(\lambda[2]) \cdots \in \mathcal{P} Prop^\omega$

to give truth to LTL-formulae.

How do the semantic clauses change?
Alternative LTL Semantics

The original clauses had the following form:

- \(\lambda, \pi \models_{LTL} p \) iff \(\lambda[0] \in \pi(p) \);
- \(\lambda, \pi \models_{LTL} \neg \varphi \) iff \(\lambda, \pi \not\models_{LTL} \varphi \);
- \(\lambda, \pi \models_{LTL} \varphi \wedge \psi \) iff \(\lambda, \pi \models_{LTL} \varphi \) and \(\lambda, \pi \models_{LTL} \psi \).

What happens if we use \(\lambda^\pi \) instead of \(\lambda, \pi \)?

We simply replace “\(\lambda, \pi \)” by “\(\lambda^\pi \)” everywhere and modify the clause for propositions as follows:

- \(\lambda^\pi \models_{LTL} p \) iff \(p \in \lambda^\pi[0] \).

Note, we use the same notations for \(\lambda^\pi \) as for paths!
We can state the relation between Λ_m, M, q and $A_{m,q}$ precisely.

Proposition 3.19

Let $M = (Q, R, \pi)$ and $q_0 \in Q$. The automaton A_{m,q_0} accepts the language

$$\{\lambda^\pi \mid \lambda \in \Lambda_m(q_0)\}.$$

Proof.

Exercise!
In the following we define the automaton A_φ accepting exactly those infinite words w over $\mathcal{P}(\text{Prop})$ such that $w \models \varphi$. Then, we have:

$$M, q \models \varphi \text{ iff } L(A_{m,q}) \subseteq L(A_\varphi) \text{ iff } L(A_{m,q}) \cap \overline{L(A_\varphi)} = \emptyset.$$

How can we avoid the complementation of the Büchi automaton (this operation is expensive)? We have:

$$L(A_{m,q}) \cap \overline{L(A_\varphi)} = \emptyset \text{ iff } L(A_{m,q}) \cap L(A_{\neg \varphi}) = \emptyset.$$
The Automaton A_φ

In the following we are concerned with construction the automaton A_φ.

Theorem 3.20 ([Sistla and Clarke, 1985, Lichtenstein and Pnueli, 1985, Vardi and Wolper, 1986])

For a given \mathcal{L}_{LTL}-formula φ a **Büchi Automaton** $A_\varphi = (S, \Sigma, \Delta, S_0, F)$ accepting exactly the words satisfying φ can be constructed where $\Sigma = \mathcal{P}(\text{Prop})$ and $|S| \leq 2^{O(|\varphi|)}$.

In the following we introduce additional notation and construct the automaton.
How does the automaton look like?

- **States** will consist of subformulae of \(\varphi \) (or their negations).
- A **run** \(\rho = S_1 S_2 \ldots \) of the automaton is an **infinite sequence of such subformulae** sets.

Note that we showed how to interpret LTL formulae over words of \(\mathcal{P}(\text{Prop}) \).

Given such a word \(\lambda^\pi = w_1 w_2 \ldots \) we would like to **extend each** \(w_i \) with **subformulae to** \(S_i \) such that

\[
\lambda^\pi[i, \infty] \models \psi \quad \text{iff} \quad \psi \in S_i
\]
Definition 3.21 (Closure $cl(\varphi)$)

The closure $cl(\varphi)$ is defined as follows:

1. $\varphi \in cl(\varphi)$,
2. $\phi \land \psi \in cl(\varphi)$ implies $\phi, \psi \in cl(\varphi)$,
3. $\neg \psi \in cl(\varphi)$ implies $\psi \in cl(\varphi)$,
4. $\psi \in cl(\varphi)$ and $\psi \neq \neg \phi$ implies $\neg \psi \in cl(\varphi)$,
5. $\Box \psi \in cl(\varphi)$ implies $\psi \in cl(\varphi)$,
6. $\psi U \phi \in cl(\varphi)$ implies $\psi, \phi \in cl(\varphi)$.

Note, that it holds that $|cl(\varphi)| \leq 2|\varphi|$.
Example 3.22 (Closure)

How does the closure for $\varphi = rU(s \lor t)$ look like?

The closure $cl(\varphi)$ consists of the following formulae:

1. φ
2. $s \lor t$
3. r
4. s
5. t

and their negations!

What other properties should such sets fulfill? Note, that we are interested in a **correspondence to runs**.
Definition 3.23 (Logically consistent)

We call $B \subseteq \text{cl}(\varphi)$ \textbf{logically consistent} iff for all $\varphi_1 \land \varphi_2, \psi \in \text{cl}(\varphi)$:

1. $\varphi_1 \land \varphi_2 \in B$ iff $\varphi_1 \in B$ and $\varphi_2 \in B$,
2. $\psi \in B$ implies $\neg \psi \notin B$,
3. $\top \in \text{cl}(\varphi)$ implies $\top \in B$.

We identify $\neg \neg \varphi$ with φ.

Definition 3.24 (Locally consistent)

We call $B \subseteq \text{cl}(\varphi)$ \textbf{locally consistent} iff for all $\varphi_1 \mathcal{U} \varphi_2 \in \text{cl}(\varphi)$:

1. $\varphi_2 \in B$ implies $\varphi_1 \mathcal{U} \varphi_2 \in B$.
2. $\varphi_1 \mathcal{U} \varphi_2 \in B$ and $\varphi_2 \notin B$ implies $\varphi_1 \in B$.
Definition 3.25 (Maximal consistent)

We call \(B \subseteq cl(\varphi) \) maximal iff for all \(\psi \in cl(\varphi) \)

\[\psi \not\in B \quad \text{implies} \quad \neg\psi \in B. \]

We identify \(\neg
\neg \varphi \) with \(\varphi \).

Definition 3.26 (Elementary, \(EL(\varphi) \))

We call \(B \subseteq cl(\varphi) \) elementary iff \(B \) is logically and locally consistent and maximal.

We define \(EL(\varphi) \) as the set of all elementary subsets of \(cl(\varphi) \).

In the following we construct infinite words over \(EL(\varphi) \) that corresponds to accepting paths.
The closure of $\varphi = r \mathcal{U} s$ is given by $\{\varphi, \neg\varphi, r, s, \neg r, \neg s\}$.

Which of the following sets are **elementary**?

1. \emptyset
2. $\{r \mathcal{U} s, r, s\}$
3. $\{r \mathcal{U} s, r\}$
4. $\{r \mathcal{U} s, \neg r, \neg s\}$
5. $\{r \mathcal{U} s, \neg r, s\}$
6. $\{r \mathcal{U} s, r, \neg s\}$
7. $\{r \mathcal{U} s, r, \neg r, \neg s\}$
8. $\{\neg r \mathcal{U} s, r, \neg s\}$
9. $\{\neg r \mathcal{U} s, \neg r, \neg s\}$
Example 3.27 (Elementary sets)

The closure of $\varphi = r U s$ is given by

$$cl(\varphi) = \{\varphi, \neg\varphi, r, s, \neg r, \neg s\}$$

The following list contains all elementary sets of φ:

1. $E_1 = \{r U s, r, s\}$
2. $E_2 = \{r U s, \neg r, s\}$
3. $E_3 = \{r U s, r, \neg s\}$
4. $E_4 = \{\neg r U s, r, \neg s\}$
5. $E_5 = \{\neg r U s, \neg r, \neg s\}$
It is easily seen that we have the following fixed-point equivalence

\[\varphi_1 U \varphi_2 = \varphi_2 \lor (\varphi_1 \land \lozenge \varphi_1 U \varphi_2). \]

We construct a path over \(\mathcal{EL}(\varphi) \):

Definition 3.28 (\(\varphi \)-closure-labelling)

A \(\varphi \)-closure-labelling is a function

\[\tau : \mathbb{N}_0 \rightarrow \mathcal{EL}(\varphi) \]

such that:

1. \(\varphi \in \tau(i) \iff \varphi \in \tau(i + 1)\), \hspace{1cm} \(\text{(C1)}\)
2. \(\varphi_1 U \varphi_2 \in \tau(i) \iff \varphi_2 \in \tau(i) \text{ or } (\varphi_1 \in \tau(i) \text{ and } \varphi_1 U \varphi_2 \in \tau(i + 1)), \hspace{1cm} \(\text{(C2)}\)
3. \(\varphi_1 U \varphi_2 \in \tau(i) \implies \exists j (j \geq i \text{ and } \varphi_2 \in \tau(j)). \hspace{1cm} \(\text{(C3)}\)

(C1) – (C3) mirror the semantics of path formulae of LTL.
Remark 3.29

The **fixed-point equivalence** is modelled by (C2). Still, the “valid” closure labelling has to ensure that sometimes φ_2 becomes eventually the case. This is captured by (C3).

Given a word λ^π a **closure labelling corresponding** to λ^π should agree with the propositional symbols.

Definition 3.30 (λ^π-valid)

A φ-**closure-labelling** τ is said to be λ^π-**valid** iff for all $p \in Prop$ it holds that

1. $p \in \tau(i)$ implies $p \in \lambda^\pi[i]$, and
2. $\neg p \in \tau(i)$ implies $p \notin \lambda^\pi[i]$.
Lemma 3.31 (Soundness Lemma)

Let $\varphi \in \mathcal{L}_{LTL}(Prop)$ and τ be a λ^π-valid closure labelling. Then, for all $\varphi' \in cl(\varphi)$ and all $i \geq 0$ it holds that

$$\varphi' \in \tau(i) \iff \lambda^\pi[i, \infty] \models \varphi'.$$

Lemma 3.32 (Existence Lemma)

Let $\varphi \in \mathcal{L}_{LTL}(Prop)$. If $\lambda^\pi \models \varphi$. Then, there is a λ^π-valid φ-closure labelling τ such that $\varphi \in \tau(0)$.
Proof of Lemma 3.31.
The proof is done by structural induction on φ'.

Exercise!

Proof of Lemma 3.32.
The labelling is constructed from λ^π and by the subformulae true at each point.

Exercise!

From these lemmata we obtain the following theorem.

Theorem 3.33

Let $\varphi \in \mathcal{L}_{LTL}(Prop)$. Then, $\lambda^\pi \models \varphi$ iff there is a λ^π-valid φ-closure labelling τ such that $\varphi \in \tau(0)$.

Now we proceed with the proof of Theorem 3.20.
Proof Idea

$\lambda = q_0 q_1 q_2 \ldots$

$\lambda, \pi \models \varphi$ iff $\lambda^\pi \models \varphi$

$\lambda^\pi = \pi(q_0) \pi(q_1) \pi(q_2) \ldots$

$\lambda^\pi \models \varphi$ iff

τ is λ^π-valid φ-closure labelling iff

τ accepted by the automaton

$\tau = B_0 B_1 B_2 \ldots$

run of the automaton given λ^π
Proof of Theorem 3.20

Using Theorem 3.33 we build a generalised Büchi automaton accepting all the finite words $\lambda \pi$ that correspond to a $\lambda \pi$-valid φ-closure-labelling.

Idea:

1. The automaton reads $\lambda \pi$.
2. Each symbol causes a state change, states are elementary sets.
3. Runs ρ of the automaton correspond to φ-closure labellings.
4. ρ is accepted iff it is $\lambda \pi$-valid and satisfies φ.
The automaton is defined as \(A = (\Sigma, S, \Delta, S_0, F) \) where

1. \(\Sigma = \mathcal{P}(\text{Prop}) \)
2. \(S = \mathcal{E}\mathcal{L}(\varphi) \)
3. \(S_0 = \{ s \in S \mid \varphi \in s \} \)
4. \(F \leadsto \) see below
5. \((s, a, t) \in \Delta \) iff
 1. \(s \cap \text{Prop} = a \)
 2. \(\forall \bigcirc \psi \in \text{cl}(\varphi) : \bigcirc \psi \in s \) iff \(\psi \in t \)
 3. \(\forall \varphi_1 U \varphi_2 \in \text{cl}(\varphi) : \)
 \(\varphi_1 U \varphi_2 \in s \) iff \(\varphi_2 \in s \) or \(\varphi_1 \in s \) and \(\varphi_1 U \varphi_2 \in t \)
Proof of Theorem 3.20 ctd.

How to define the set of accepting states?

We need to ensure that condition (C3) of a φ-closure-labelling is satisfied; that is, that eventualities become actually satisfied.

So, once a state containing an eventuality $\varphi_1 U \varphi_2$ is visited sometime in the future a state containing φ_2 must be visited.

We require that states containing

$$(\varphi_2 \text{ and } \varphi_1 U \varphi_2) \text{ or not } \varphi_1 U \varphi_2$$

occur infinitely often.
Proof of Theorem 3.20 ctd.

So, let $\varphi_1 U \psi_1, \ldots, \varphi_n U \psi_n$ be all eventualities occurring in $cl(\varphi)$. Then, we define $F = \{F_1, \ldots, F_n\}$ with

$$F_i = \{s \in S \mid \{\varphi_i U \psi_i, \psi_i\} \subseteq s \text{ or } \varphi_i U \psi_i \not\in s\}.$$

That is,

$$F = \{\{s \in Q \mid \varphi_1 U \varphi_2 \not\in s \text{ or } \varphi_2 \in s\} \mid \varphi_1 U \varphi_2 \in cl(\varphi)\}.$$
Proof of Theorem 3.20 ctd.

In line with Theorem 3.33 we have to show that A accepts λ^π iff there is an accepting run ρ with $\varphi \in \rho(0)$ and which is an λ^π-valid φ-closure labelling. This is immediate by construction.

Finally, we convert the generalised Büchi automaton to a Büchi automaton (cf. Proposition 3.14). The number of states of the automaton is exponential in the length of the formula.
Encoding as Generalised Büchi Automaton

How did we encode the logical elements?

- Semantics of **propositional logic?** \(\xrightarrow{\sim} \text{states} \)
- \(\bigcirc \)-operator? \(\xrightarrow{\sim} \text{transition relation} \)
- \(\mathcal{U} \)-operator? \(\xrightarrow{\sim} \text{states plus transition relation plus acceptance condition} \)

\[
\varphi_1 \mathcal{U} \varphi_2 = \varphi_2 \lor (\varphi_1 \land \bigcirc \varphi_1 \mathcal{U} \varphi_2)
\]
Example 3.34

We consider the formula \(\varphi = r \mathcal{U} s \). **Elementary sets** of \(\varphi \):

1. \(E_1 = \{ r \mathcal{U} s, r, s \} \)
2. \(E_2 = \{ r \mathcal{U} s, \neg r, s \} \)
3. \(E_3 = \{ r \mathcal{U} s, r, \neg s \} \)
4. \(E_4 = \{ \neg r \mathcal{U} s, r, \neg s \} \)
5. \(E_5 = \{ \neg r \mathcal{U} s, \neg r, \neg s \} \)
Constructing the Automaton for $r U s$

- **Initial states?**
 \[
 \{ s \in S \mid \varphi \in s \}
 \]

- **Accepting states?**
 If $\varphi_1 U \varphi_2 \in cl(\varphi)$ then
 \[
 \varphi_1 U \varphi_2 \notin s \text{ or } \varphi_2 \in s
 \]
Initial states?
\[\{ s \in S \mid \varphi \in s \} \]

Accepting states?
If \(\varphi_1 \cup \varphi_2 \in \text{cl}(\varphi) \) then
\[\varphi_1 \cup \varphi_2 \not\in s \text{ or } \varphi_2 \in s \]

(post-condition)

\(\therefore A \text{ reads } \{ r \} \)

\(\forall r \cup s \in \text{cl}(\varphi) : r \cup s \in s \text{ iff } (s \in s \text{ or } (r \in s \text{ and } r \cup s \in t)) \)
∀r U s ∈ cl(φ) : r U s ∈ s iff (s ∈ s or (r ∈ s and r U s ∈ t))
\(\forall r \mathcal{U} s \in \text{cl}(\varphi) : r \mathcal{U} s \in s \text{ iff } (s \in s \text{ or } (r \in s \text{ and } r \mathcal{U} s \in t)) \)

- \(A \text{ reads } \{s\} \)
- \(\leadsto A \text{ reads } \{r, s\} \)
\[\forall r \cup s \in cl(\varphi) : r \cup s \in s \iff (s \in s \text{ or } (r \in s \text{ and } r \cup s \in t)) \]
∀r U s ∈ cl(φ) : r U s ∈ s iff (s ∈ s or (r ∈ s and r U s ∈ t))
∀r U s ∈ cl(ϕ) : r U s ∈ s iff (s ∈ s or (r ∈ s and r U s ∈ t))
Theorem 3.35 (LTL [Sistla and Clarke, 1985, Lichtenstein and Pnueli, 1985, Vardi and Wolper, 1986])

Model checking LTL is **\(\text{PSPACE-complete} \), and can be done in time \(2^{|\varphi|} O(|\mathcal{M}|) \), where \(|\mathcal{M}| \) is given by the number of transitions.**
Proof: Upper Bound

Given an \mathcal{L}_{LTL}-formula φ.

1. **Construct Büchi automaton** $A_{\neg \varphi}$ of size $2^{O(|\varphi|)}$ accepting exactly the **words satisfying** $\neg \varphi$.

2. **Kripke model** \mathcal{M}, q can directly be interpreted as a Büchi automaton $A_{\mathcal{M}, q}$ of size $O(|\mathcal{M}|)$ accepting all possible words in the Kripke model starting in q.

3. The model checking problem reduces to the **non-emptiness check of** $L(A_{\mathcal{M}, q}) \cap L(A_{\neg \varphi})$ which can be done in time $O(|\mathcal{M}|) \cdot 2^{O(|\varphi|)}$ by constructing the product automaton.
Proof: Lower Bound

Simulate n^k-space bounded deterministic Turing machine $A = (S, \Sigma, \delta, s_0, S_f)$.

\[Prop = (S \times \Sigma) \cup \Sigma \cup \{ID - Start, ID - End\} \]
Proof: Lower Bound

A path will be related to a sequence of **instantaneous descriptions**.

1. Use \(n^k \circ \) -operators to describe an ID.
2. \(\psi_w \): Encodes the **input** \(w \).
3. \(\psi_{\text{valid}} \): Checks whether an ID is valid.
4. \(\psi_{\text{next}} \): Ensures that each successive ID follows from the current one.
5. \(\psi_{\text{accept}} \): Describes the halting configurations.

Let \(\psi := \psi_w \land \psi_{\text{valid}} \land \psi_{\text{next}} \land \psi_{\text{accept}} \). Then, we have

\[
M, q_0 \not\models \neg \psi \iff \exists \lambda \in \Lambda(q_0) : \lambda, \pi \models \psi \iff A \text{ accepts } w.
\]
3.5 Model Checking CTL*
Theorem 3.36

(CTL* [Clarke et al., 1986, Emerson and Lei, 1987])

Model checking CTL* is \(\text{PSPACE-complete} \), and can be done in time \(2^{O(|\varphi|)O(|M|)} \), where \(|M| \) is given by the number of transitions.

Proof.

The hardness of CTL* model checking is immediate from Theorem 3.35 as \(\mathcal{L}_{LTL} \) “can be seen” as a fragment of \(\mathcal{L}_{CTL^*} \).
Upper bound: **Combine CTL and LTL model checking.**

- Consider \mathcal{L}_{CTL^*}-formula φ containing $\mathbf{E}\psi$ where ψ is a pure \mathcal{L}_{LTL}-formula.
- Determine all states which satisfy $\mathbf{E}\psi$ (these are all states q with $M, q \not\models_{LTL} \neg\psi$), Complexity: $PSPACE$.
- Label them by a fresh proposition, say p, and replace $\mathbf{E}\psi$ in φ by p:

\[
\mathbf{E}\psi \text{ in } \varphi \text{ by } p: \quad \mathbf{E}\bigcirc (r \land \mathbf{E}\Diamond s) \leadsto \mathbf{E}\bigcirc (p_2 \land p_1)
\]

Applying this procedure **recursively** yields a pure \mathcal{L}_{CTL}-formula which can be verified in polynomial time. Complexity: $P^{PSPACE} = PSPACE$

This is a standard approach often used!
Model checking **CTL is P-complete.**

Model checking **LTL is $PSPACE$-complete.** The algorithm has been constructed from Büchi automata.

Model checking **CTL* is also $PSPACE$-complete.** The algorithm is obtained by the ones for CTL and LTL.
3.6 References
Alternating-time Temporal Logic.

Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713.

Principles of Model Checking.
The MIT Press.

On the membership problem for functional and multivalued dependencies in relational databases.

Design and synthesis of synchronization skeletons using branching time temporal logic.

Automatic verification of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244–263.
Sometimes and not never revisited: On branching versus linear time temporal logic.

Modalities for model checking: Branching time logic strikes back.

Number of quantifiers is better than number of tape cells.

Space-bounded reducibility among combinatorial problems.

Corrigendum: Space-bounded reducibility among combinatorial problems.

Checking that finite state concurrent programs satisfy their linear specification.
3 Model Checking Temporal Logics

3.6 References

The temporal logic of programs.

The complexity of temporal model checking.

Alternating-time logic with imperfect recall.
Electronic Notes in Theoretical Computer Science, 85(2).

The complexity of propositional linear temporal logics.

An automata-theoretic approach to automatic program verification (preliminary report).
4. Reasoning about Strategies

- Alternating-Time Temporal Logics
- Imperfect Information
- References
4.1 Alternating-Time Temporal Logics
The picture so far...

What kind of logics did we introduce so far?

- **Basic Modal Logics**: modelling what is possible and necessary
- Instantiations: **epistemic logics**, dynamic logics, …
- Linear-time temporal logic (**LTL**)
- Branching-time logics (**CTL** and **CTL***)

In the temporal case each **transition** modelled a **time step**. We considered only “actor”.

Now: Modelling abilities of **multiple agents**.

Agents can **execute actions** and **cooperate**. **Action profiles** determine the behaviour of the system.
Alternating-time Temporal Logics

- ATL, ATL* [Alur et al. 1997]
- Temporal logic meets game theory
- Modeling abilities of multiple agents
- Main idea: cooperation modalities

\[\langle A \rangle \varphi: \text{coalition } A \text{ has a collective strategy to enforce } \varphi \]

Enforcement is understood in the game-theoretical sense: There is a winning strategy.
The syntax is given as for the computation-tree logics.

Definition 4.1 (Language $\mathcal{L}_{\text{ATL}^*}$ [Alur et al., 1997])

The **language $\mathcal{L}_{\text{ATL}^*}$** is given by all formulae generated by the following grammar:

$$
\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \langle \langle A \rangle \rangle \gamma \quad \text{where}
\gamma ::= \phi \mid \neg \gamma \mid \gamma \land \gamma \mid \gamma U \gamma \mid \Diamond \gamma,
$$

$A \subseteq \text{Ag}t$, and $p \in \text{Prop}$. Formulae ϕ (resp. γ) are called **state** (resp. **path**) formulae.
The language \mathcal{L}_{ATL} restricts \mathcal{L}_{ATL}^* in the same way as \mathcal{L}_{CTL} restricts \mathcal{L}_{CTL}^*: Each temporal operator must be directly preceded by a cooperation modality.

Definition 4.2 (Language \mathcal{L}_{ATL} [Alur et al., 1997])

The language \mathcal{L}_{ATL} is given by all formulae generated by the following grammar:

$$
\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \langle \langle A \rangle \rangle \lozenge \phi \mid \langle \langle A \rangle \rangle \Box \phi \mid \langle \langle A \rangle \rangle \phi \mathcal{U} \phi
$$

where $A \subseteq \text{Agt}$ and $p \in \text{Prop}$.

The language \mathcal{L}_{ATL}^+ restricts \mathcal{L}_{ATL}^* but extends \mathcal{L}_{ATL}. It allows for Boolean combinations of path formulae.

Definition 4.3 (Language \mathcal{L}_{ATL}^+)

The language \mathcal{L}_{ATL}^+ is given by all formulae generated by the following grammar:

$$
\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \langle \langle A \rangle \rangle \gamma, \\
\gamma ::= \neg \gamma \mid \gamma \land \gamma \mid \Box \phi \mid \phi U \phi.
$$

where $A \subseteq \text{Agt}$ and $p \in \text{Prop}$.
ATL Models: Concurrent Game Structures

- **Agents, actions, transitions, atomic propositions**
- Atomic propositions + **interpretation**
- Actions are abstract

\[\text{ wait,wait} \]
\[\text{ push,push} \]
\[\text{ wait,push} \]
\[\text{ push,wait} \]
\[\text{ push,wait} \]
\[\text{ push,wait} \]
\[\text{ wait,push} \]

\[\text{ pos}_0, \text{ pos}_1, \text{ pos}_2 \]
Definition 4.4 (Concurrent Game Structure)

A concurrent game structure is a tuple $\mathcal{M} = \langle \text{Agt}, Q, \pi, \text{Act}, d, o \rangle$, where:

- Agt: a finite set of all agents;
- Q: a set of states;
- $\pi: Q \rightarrow \mathcal{P}(\text{Prop})$: a valuation of propositions;
- Act: a finite set of (atomic) actions;
- $d: \text{Agt} \times Q \rightarrow \mathcal{P}(\text{Act})$ defines actions available to an agent in a state;
- o: a deterministic transition function that assigns outcome states $q' = o(q, \alpha_1, \ldots, \alpha_k)$ to states and tuples of actions.
Recall and information

A **strategy** of agent a is a **conditional plan** that specifies what a is going to do in each situation.

Two types of “situations”: Decisions are based on

- the **current state** only (\iff **memoryless strategies**)

 $$s_a : Q \rightarrow Act.$$

- on the **whole history** of events that have happened (\iff **prefect recall strategies**)

 $$s_a : Q^+ \rightarrow Act.$$

We also distinguish between agents with

- **perfect information** (all states are distinguishable).

- **imperfect information** (some state are indistinguishable).
Perfect Information Strategies

Definition 4.5 (IR- and Ir-strategies)

- A perfect information perfect recall strategy for agent a (IR-strategy for short) is a function
 \[s_a : Q^+ \to \text{Act such that } s_a(q_0q_1 \ldots q_n) \in d_a(q_n). \]
 The set of such strategies is denoted by Σ^IR_a.

- A perfect information memoryless strategy for agent a (Ir-strategy for short) is given by a function
 \[s_a : Q \to \text{Act where } s_a(q) \in d_a(q). \]
 The set of such strategies is denoted by Σ^Ir_a.

i (resp. I) stands for imperfect (resp. perfect) information and r (resp. R) for imperfect (resp. perfect) recall. [Schobbens, 2004]
Some Notation

The following holds for all kind of strategies:

- A **collective strategy** for a group of agents $A = \{a_1, \ldots, a_r\} \subseteq \text{Ag}t$ is a set $s_A = \{s_a \mid a \in A\}$ of strategies, one per agent from A.

- $s_A|_a$, we denote agent a’s part of the collective strategy s_A, $s_A|_a = s_A \cap \Sigma_a$.

- $s_{\emptyset} = \emptyset$ denotes the strategy of the empty coalition.

- Σ_A denotes the set of all collective strategies of A.

- $\Sigma = \Sigma_{\text{Ag}t}$
Outcome of a strategy

\(out(q, s_A) = \) set of **all paths** that **may occur** when agents \(A \) execute \(s_A \) from state \(q \) onward.

Definition 4.6 (Outcome)

\[
\lambda = q_0 q_1 \ldots \in Q \in out(q, s_A) \subseteq Q^\omega \text{ iff}
\]

1. \(q_0 = q \)
2. for each \(i = 1, \ldots \) there is a tuple \((\alpha_1^{i-1}, \ldots, \alpha_k^{i-1}) \in Act^k \) such that
 - \(\alpha_a^{i-1} \in d_a(q_{i-1}) \) for each \(a \in \text{Ag} \)
 - \(\alpha_a^{i-1} = s_A|_a(q_0 q_1 \ldots q_{i-1}) \) for each \(a \in A \)
 - \(o(q_{i-1}, \alpha_1^{i-1}, \ldots, \alpha_k^{i-1}) = q_i \)

For an *Ir*-strategy replace “\(s_A|_a(q_0 q_1 \ldots q_{i-1}) \)” by “\(s_A|_a(q_{i-1}) \)”.
Define $\ltm M, q \models \phi \ltmx p$ iff p is in $\pi(q)$;

$\ltm M, q \models \phi \land \psi$ iff $\ltm M, q \models \phi$ and $\ltm M, q \models \psi$;

$\ltm M, q \models \phi$ iff there is a collective $\ltm M$-strategy s_A such that, for each path $\lambda \in \text{out}(q, s_A)$, we have $\ltm M, \lambda \models \phi$.

$\ltm M, \lambda \models \phi$ iff $\ltm M, \lambda[1, \infty] \models \phi$;

$\ltm M, \lambda \models \phi$ iff $\ltm M, \lambda[i, \infty] \models \phi$ for some $i \geq 0$;

$\ltm M, \lambda \models \phi$ iff $\ltm M, \lambda[i, \infty] \models \phi$ for all $i \geq 0$;

$\ltm M, \lambda \models \phi$ iff $\ltm M, \lambda[i, \infty] \models \phi$ for some $i \geq 0$, and $\ltm M, \lambda[j, \infty] \models \phi$ for all $0 \leq j \leq i$.

Note that temporal formulae and the Boolean connectives are treated as before.
Example: Robots and Carriage

\[pos_0 \rightarrow \langle 1 \rangle \square \neg pos_1 \]
Definition 4.8 (ATL\(_{lx}\), ATL\(_{lx}^+\), ATL\(_{lx}^*\), ATL, ATL\(_*\))

We define ATL\(_{lx}\), ATL\(_{lx}^+\), and ATL\(_{lx}^*\) as the logics \((\mathcal{L}_{ATL}, \models_{Ix})\), \((\mathcal{L}_{ATL}^+, \models_{Ix})\) and \((\mathcal{L}_{ATL}^*, \models_{Ix})\) where \(x \in \{r, R\}\), respectively. Moreover, we use ATL (resp. ATL\(_*\)) as an abbreviation for ATL\(_{IR}\) (resp. ATL\(_{IR}^*\)).

Intuitively, a logic is given by the set of all valid formulae.

Example 4.9 (A simple scenario)

\(\sim \blackboard\)
Theorem 4.10

For \mathcal{L}_{ATL}, the perfect recall semantics is equivalent to the memoryless semantics under perfect information, i.e., $M, q \models_{\text{IR}} \varphi$ iff $M, q \models_{\text{Ir}} \varphi$. Both semantics are different for $\mathcal{L}_{\text{ATL}^*}$. That is

$$\text{ATL} = \text{ATL}_{\text{Ir}} = \text{ATL}_{\text{IR}}.$$

Proof idea.

The first “non-looping part” of each path has to satisfy a formula. ⊳ Exercise

The property has been first observed in [Schobbens, 2004] but it follows from [Alur et al., 2002] in a straightforward way.
Example: Robots and Carriage (2)

What about $\langle\langle 1, 2 \rangle\rangle (\lozenge pos_1 \land \lozenge halt)$?

$\mathcal{M}, q_0 \models \mathcal{LR} \langle\langle 1, 2 \rangle\rangle (\lozenge pos_1 \land \lozenge halt)$

$\mathcal{M}, q_0 \not\models \mathcal{LR} \langle\langle 1, 2 \rangle\rangle (\lozenge pos_1 \land \lozenge halt)$
4.2 Imperfect Information
Imperfect information

How can we reason about agents/extensive games with imperfect information?

We combine ATL* and epistemic logic.

- We extend CGSs with indistinguishability relations \(\sim_a \subseteq Q \times Q \), one per agent. The relations are assumed to be equivalence relations.

- We interpret \(\langle A \rangle \) epistemically (\(\sim \models i_R \) and \(\models ir \))

\(\sim \) Problems!

Strategic ability and knowledge are not independent.
Definition 4.11 (CEGS)

A concurrent epistemic game structure (CEGS) is a tuple

\[M = (\text{Agt}, Q, \Pi, \pi, \text{Act}, d, o, \{ \sim_a \mid a \in \text{Agt} \}) \] with

- \((\text{Agt}, Q, \Pi, \pi, \text{Act}, d, o) \) a CGS and
- \(\sim_a \subseteq Q \times Q \) equivalence relations (indistinguishability relations).
Example: Robots and Carriage

What about $\langle\langle \text{Agt} \rangle\rangle \bigcirc pos_1$ in q_0?

$\mathcal{M}, q_0 \models ir\langle\langle \text{Agt} \rangle\rangle \bigcirc pos_1$

$\mathcal{M}, q_0 \not\models ir\langle\langle \text{Agt} \rangle\rangle \bigcirc pos_1$
Problem:
Strategic and epistemic abilities are not independent!

\[\langle A \rangle \Phi = A \text{ can enforce } \Phi \]

It should at least mean that \(A \) are able to identify and execute the right strategy!

Executable strategies = uniform strategies
Definition 4.12 (Uniform strategy)

Strategy \(s_a \) is **uniform** iff it specifies the **same choices for indistinguishable situations**:

- **Memoryless strategies:**

 \[\text{if } q \sim_a q' \text{ then } s_a(q) = s_a(q'). \]

- **Perfect recall:**

 \[\text{if } \lambda \approx_a \lambda' \Rightarrow s_a(\lambda) = s_a(\lambda'), \]

 where \(\lambda \approx_a \lambda' \) iff \(\lambda[i] \sim_a \lambda'[i] \) for every \(i \).

A **collective strategy** is uniform iff it consists only of uniform individual strategies.
4 Reasoning about Strategies

4.2 Imperfect Information

Imperfect Information Strategies

Definition 4.13 (IR- and Ir-strategies)

- A imperfect information perfect recall strategy for agent a (IR-strategy for short) is a uniform IR-strategy.
- A imperfect information memoryless strategy for agent a (Ir-strategy for short) is a uniform Ir-strategy.

The outcome is defined as before.
Imperfect Information Semantics

The **imperfect information semantics** is defined as before, only the clause for

\[M, q \models_{lx} \langle A \rangle \varphi \text{ iff there is a collective } lx\text{-strategy } s_A \text{ such that, for each path } \lambda \in out(q, s_A), \text{ we have } M, \lambda \models_{lx} \varphi. \]

is replaced by

\[M, q \models_{ix} \langle A \rangle \varphi \text{ iff there is a collective } ix\text{-strategy } s_A \text{ such that, for each path } \lambda \in \bigcup_{q' : q \sim_A q'} out(q', s_A), \text{ we have } M, \lambda \models_{ix} \varphi \]

where \(x \in \{r, R\} \) and \(\sim_A := \bigcup_{a \in A} \sim_a \).

Remark 4.14

This definition models that “**everybody in** A knows that \(\varphi \).”
The fixed-point characterisation do not hold anymore!

Theorem 4.15

The following formulae are **not** valid for ATL$_{ir}$:

1. $\langle A \rangle \Box \varphi \leftrightarrow \varphi \land \langle A \rangle \bigcirc \langle A \rangle \Box \varphi$
2. $\langle A \rangle \varphi_1 U \varphi_2 \leftrightarrow \varphi_2 \lor (\varphi_1 \land \langle A \rangle \bigcirc \langle A \rangle \varphi_1 U \varphi_2)$.

Proof.

\(\rightsquigarrow\): Exercise.

\(\rightsquigarrow\) blackboard
4.3 References
Deontic logic.

Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713.

The BOID architecture: conflicts between beliefs, obligations, intentions and desires.

Model checking logics of strategic ability: Complexity.

Intention is choice with commitment.
Temporal and modal logic.

Reasoning about Knowledge.
MIT Press: Cambridge, MA.

Fausto Giunchiglia and Paolo Traverso (2000).

Formal semantics of the core of AGENT-0.

Logic in Computer Science: Modeling and reasoning about systems.
Cambridge University Press.

Strategic planning through model checking of ATL formulae.
Wojtek Jamroga and Jürgen Dix (2005).
Model Checking Strategic Abilities of Agents under Incomplete Information.

Wojtek Jamroga and Jürgen Dix (2005).
Do Agents Make Model Checking Explode (Computationally)?

Wojtek Jamroga and Jürgen Dix. (2008)
Model Checking Abilities of Agents: A closer look.

Semantical analysis of modal logic I. Normal propositional calculi.

Semantical considerations on modal logic.
4.3 References

Semantical analysis of modal logic II. Non-normal modal propositional calculi.
In Addison, Henkin, and Tarski (Eds.), The theory of models, Amsterdam, North-Holland, pp. 206–220.

Planning as model checking for extended goals in non-deterministic domains.

Modeling Rational Agents within a BDI-Architecture.

von Wright, G. H. (1951).
Deontic logic.
Mind 60, 1–15.

Reasoning about Rational Agents.
5. Model Checking Strategic Logics

- Complexity Theory
- Types of Strategies
- ATL
- ATL*
- ATL⁺
- Imperfect Information and Perfect Recall
- Summary
- References
In this section we turn to model checking strategic logics (more precisely, alternating-time temporal logics).

The results make use of techniques introduced for LTL and CTL*.

We assume familiarity with basic concepts of complexity theory.
5.1 Complexity Theory
Complexity Classes

Deterministic Turing machine (DTM)
- infinite (readable and writable) tape
- finitely many states
- deterministic moves

Non-deterministic Turing machine (NTM)
Like a DTM but non-deterministic moves are allowed.

Oracle Machine (OTM)
- Let A be a language. An A-oracle machine is a DTM or NTM with a subroutine which allows to decide in one step whether $w \in A$ for some word w.
- For a complexity class C a C-oracle machine is a A-oracle machine for any $A \in C$.
Complexity Classes Σ^P_2, Δ^P_2, Δ^P_3

- Σ^P_i: problems solvable in polynomial time by a non-deterministic Turing machine making adaptive queries to a Σ^P_{i-1} oracle; i.e. by Σ^P_{i-1}-oracle polynomial time NTMs.
- $\Sigma^P_2 = \text{NP}^{\text{NP}}$: problems solvable in polynomial time by a non-deterministic Turing machine making adaptive queries to an NP oracle.
- $\Delta^P_2 = \text{P}^{\text{NP}}$: A problem is in $\Delta^P_2 = \text{P}^{\text{NP}}$ if it can be solved in deterministic polynomial time with subcalls to an NP-oracle. We also have $\Delta^P_3 := \text{P}[\text{NP}^{\text{NP}}]$ and $\Delta^P_1 = \text{P}$.

We have:

$$\text{P} = \Delta^P_1 \subseteq \Sigma^P_1 = \text{NP} \subseteq \Delta^P_2 \subseteq \Sigma^P_2 \subseteq \cdots \subseteq \text{PH} \subseteq \text{PSPACE}.$$
5.2 Types of Strategies
Strategies

We have introduced **four types of strategies**:

1. ir-strategies;
2. Ir-strategies;
3. IR-strategies;
4. iR-strategies.

How many strategies are there for each type?

1. exponentially many;
2. exponentially many;
3. infinitely many;
4. infinitely many.

Exponentially many wrt the size of the input! $\approx |\text{Act}|^{|Q|}$
Assume we are looking for a “good” \(lr \)-strategy wrt some property \(P \). How complex is this task? (Upper bound)

It is in \(\text{NP} \), provided \(P \in \mathcal{P} \! \)!

1. Guess \(s_A \);
2. check whether \(s_A \) satisfies \(P \).

And the case for “good” \(ir \)-strategies?

It is also in \(\text{NP} \), provided \(P \in \mathcal{P} \! \)!

1. Guess \(lr \)-strategy \(s_A \);
2. check whether it is an \(ir \)-strategy, i.e. for uniformity (\(Q \) is finite!);
3. check whether \(s_A \) satisfies \(P \).
What if P is verifiable in C for an arbitrary complexity class C?

Finding ir- and Ir-strategies is in NP^C.

What about perfect recall strategies?

There are infinitely many: So there is no general method!
5.3 ATL
Perfect Information

Recall Theorem 4.10: $\text{ATL} = \text{ATL}_{Ir} = \text{ATL}_{IR}$

The ATL model checking algorithm employs the well-known fixpoint characterisations:

\[
\langle\langle A \rangle\rangle \square \varphi \iff \varphi \land \langle\langle A \rangle\rangle \lozenge \langle\langle A \rangle\rangle \square \varphi,
\]

\[
\langle\langle A \rangle\rangle \varphi_1 \mathcal{U} \varphi_2 \iff \varphi_2 \lor \varphi_1 \land \langle\langle A \rangle\rangle \lozenge \langle\langle A \rangle\rangle \varphi_1 \mathcal{U} \varphi_2.
\]

Do these characterisations also hold for incomplete information?

No! A choice of an action at a state q has non-local consequences: It automatically fixes choices at all states q' indistinguishable from q for the coalition A.
function $mcheck(M, \varphi)$.

Returns states q with $M, q \models \varphi$.

case $\varphi \in \Pi$: return $\pi(p)$
case $\varphi = \neg \psi$: return $Q \setminus mcheck(M, \psi)$
case $\varphi = \psi_1 \lor \psi_2$: return $mcheck(M, \psi_1) \cup mcheck(M, \psi_2)$
case $\varphi = \langle\langle A\rangle\rangle \psi$: return $pre(M, A, mcheck(M, \psi))$
case $\varphi = \langle\langle A\rangle\rangle \Box \psi$:

\[
\begin{align*}
Q_1 & := Q; \\
Q_2 & := mcheck(M, \psi); \\
Q_3 & := Q_2;
\end{align*}
\[
\text{while } Q_1 \not\subset Q_2 \\
\text{do } Q_1 := Q_2; \\
\text{do } Q_2 := pre(M, A, Q_1) \cap Q_3 \\
\text{od; return } Q_1
\end{align*}
\]
case $\varphi = \langle\langle A\rangle\rangle \psi_1 U \psi_2$:

\[
\begin{align*}
Q_1 & := \emptyset; \\
Q_2 & := mcheck(M, \psi_1); \\
Q_3 & := mcheck(M, \psi_2); \\
\text{while } Q_3 \not\subset Q_1 \\
\text{do } Q_1 := Q_1 \cup Q_3; \\
\text{do } Q_3 := pre(M, A, Q_1) \cap Q_2 \\
\text{od; return } Q_1
\end{align*}
\]
end case

Multi-agent extension of CTL model checking.
function $\text{pre}(M, A, Q)$.

Auxiliary function; returns the exact set of states Q' such that, when the system is in a state $q \in Q'$, agents A can cooperate and enforce the next state to be in Q.

| return $\{q \mid \exists \alpha_A \forall \alpha_{\text{Agt}\setminus A} o(q, \alpha_A, \alpha_{\text{Agt}\setminus A}) \in Q\}$ |

The function follows the same idea as the pre-image function of **CTL** model checking.
Theorem 5.1 (ATL\textsubscript{Ir} and ATL\textsubscript{IR} [Alur et al., 2002])

Model checking ATL\textsubscript{Ir} and ATL\textsubscript{IR} is \textit{P-complete}, and can be done in time $O(|M| \cdot |\varphi|)$, where $|M|$ is given by the number of transitions in M.

Note, that the size of M is \textbf{exponential} in the number of states and agents!

Proof: Upper Bound

- Each case of the algorithm is called at most $O(|\varphi|)$ times and terminates after $O(|M|)$.
- The latter is shown by translating the model to a two-player game [Alur et al., 2002], and then solving the “invariance game” on it in polynomial time ([Beeri, 1980], [Alur et al., 2002]).
And-Or-Graph Reachability

For the lower bound, we reduce reachability in and-or-graphs.

An and-or graph [Immerman, 1981]

- is a tuple \((E, V, l)\) such that \(G = (E, V)\) is a directed acyclic graph and \(l : V \rightarrow \{\land, \lor\}\) a labeling function.

Let \(x_1, \ldots, x_n\) denote all successor nodes of \(u\). \(v\) is said to be reachable from \(u\) iff

1. \(u = v\); or
2. \(l(u) = \land, n \geq 1\), and \(v\) is reachable from all \(x_i\)’s; or,
3. \(l(u) = \lor, n \geq 1\), and \(v\) is reachable from some \(x_i\).

Theorem 5.2 ([Immerman, 1981])

The and-or-graph reachability problem is P-complete.
Proof: Lower Bound

Hardness is shown by a reduction of reachability in And-Or-Graphs:

- Transform and-or-graph to a CGS;
- Player 1 owns or-states;
- Player 2 owns and-states;
- \(\nu \) reachable from \(a \) iff \(M, a \models \langle \langle 1 \rangle \rangle \lozenge l_\nu \).
Imperfect Information

Agent’s ability to identify a strategy as winning also varies throughout the game in an arbitrary way (agents can learn as well as forget). This suggests that winning strategies cannot be synthesized incrementally.

How to model check a formula \(M, q \models \langle A \rangle \gamma \) where \(\gamma \) includes no nested cooperation modalities?

Theorem 5.3 (ATL\(_{ir}\))

Model checking ATL\(_{ir}\) is \(\Delta_2^P \)-complete.

Proof: Lower Bound

Reduction of SNSAT\(_1\).
Recall: $\Delta_2^P = P^{NP}$

Proof: Upper Bound

Let $\ll A \gg \gamma$ be given where γ includes no nested cooperation modalities.

1. **Guess a strategy** s_A of A.
2. "Prune" M to $M|_{s_A}$; i.e. remove transitions that cannot occur according to s_A.
3. **Remove labels** from $M|_{s_A}$ and interpret it as Kripke structure $M'|_{s_A}$
4. Then,

$$ M, q \models \ll A \gg \gamma \iff M'|_{s_A}, q \models^{CTL} A \gamma $$

The basic idea is to **guess** a strategy and apply **CTL model checking**.
ATL and CTL: Pruning

Guess the strategy s_1 in which 1 always plays α.

$\langle\langle 1 \rangle\rangle \diamond \gamma \leadsto \text{guess } s_1$, check $A\diamond \gamma$ in the pruned model
5.4 ATL*
Tree automata

- **ω-automata** accept infinite words.
- **LTL** formulae are interpreted over infinite words.
- Fixing a **strategy** and unraveling a CGS results in an infinite **tree**.
- **Tree automata on infinite trees** accept infinite trees instead of infinite words.
- The **transition relation** of a tree automata accepting trees with maximal branching \(k \) is given by

\[
\Delta : Q \times \Sigma \times \{1, \ldots, k\} \rightarrow \mathcal{P}(\bigcup_{i=1}^k Q^i)
\]

with \(\Delta(q, a, i) \subseteq Q^i \).

- A tree is **accepted** if each branch of the tree is accepted in the same way as for \(\omega \)-automata.
Theorem 5.4 (\(\text{ATL}^*_i\)r and \(\text{ATL}^*_I\)r [Schobbens, 2004])

Model checking \(\text{ATL}^*_i\)r and \(\text{ATL}^*_I\)r is \(PSPACE\)-complete in the number of transitions in the model and the length of the formula.

Proof: Lower Bound

\(\mathcal{L}_{LTL}\) is contained in \(\mathcal{L}_{\text{ATL}^*}\) which renders \(\mathcal{L}_{\text{ATL}^*}\) with the perfect information memoryless semantics to be at least \(PSPACE\)-hard.
Proof: Upper Bound

Let $\langle A \rangle \psi$ where ψ is an \mathcal{L}_{LTL}-formula.

1. Guess an *ir*-strategy s_A of A.
2. "Prune" M to $M|_{s_A}$; i.e. remove transitions that cannot occur according to s_A.
3. Remove labels from $M|_{s_A}$ and interpret it as Kripke structure $M'|_{s_A}$
4. Then,

$$M, q \models \langle A \rangle \gamma \iff M'|_{s_A}, q \models^{\text{CTL}^*} A \gamma$$

This procedure can be performed in $\text{NP}^{\text{PSPACE}}$, which renders the complexity of the whole language to be in $\text{P}^{\text{NP}^{\text{PSPACE}}} = \text{PSPACE}$.
Theorem 5.5 (ATL* \textsubscript{IR} [Alur et al., 2002])

Model checking ATL* \textsubscript{IR} is 2EXPTIME-complete in the number of transitions in the model and the length of the formula.

Proof sketch

Let \mathcal{M} be a CGS and $\langle A \rangle \psi$ be an $\mathcal{L}_{ATL}*$-formula (where we assume that ψ is an \mathcal{L}_{LTL}-formula).

- Given s_A of A and a state q. **Unfold model** into a q-rooted tree representing all possible behaviors with agents A following their strategy s_A.
- (q, A)-**execution tree** is **induced** by $out(q, s_A)$.
5 Model Checking Strategic Logics

5.4 ATL

Tree unravelling

(α, α)

(β, α)

(α, α)

(α, β)

$(q_1, \{1\})$-execution tree
Proof sketch: Upper Bound

1. Construct Büchi tree automaton $A_{\mathcal{M},q,A}$ that accepts exactly the (q, A)-execution trees.

2. Construct a Rabin tree automaton which accepts all trees that satisfy the L_{CTL^*}-formula $A\psi$ [Emerson and Sistla, 1984].

3. The product automaton $A_\psi \times A_{\mathcal{M},q,A}$, accepting the trees accepted by both automata, is a Rabin tree automaton with $n := O(|A_\psi| \cdot |A_{\mathcal{M},q,A}|)$ many states and $r := 2^{O(|\psi|)}$ many Rabin pairs.

4. Emptiness check can be done in time $O(n \cdot r)^{3r}$

5.5 ATL$^+$
Theorem 5.6 (ATL\textsubscript{ir} and ATL\textsubscript{lr} [Schobbens, 2004])

Model checking ATL\textsubscript{ir} and ATL\textsubscript{lr} is Δ_3-complete in the number of transitions in the model and the length of the formula.

Proof

1. Guess a strategy s_A of A.
2. “Prune” M to $M\mid_{s_A}$.
3. Remove labels from $M\mid_{s_A} \xrightarrow{} M'\mid_{s_A}$.
4. Then, $M, q \models \langle\langle A\rangle\rangle \gamma$ iff $M'\mid_{s_A}, q \models^{\text{CTL}^+} A\gamma$.

Complexity: $\Delta_2^P \Delta_2^P = \Delta_3^P$, Hardness: Reduction of the SNSAT\textsubscript{3}.
The following result of the upper bound is more sophisticated. The idea is that only a finite segment of fixed length of an Ir-strategy is needed. For the lower bound the QSAT problem is reduced to model checking ATL^+_Ir.

Theorem 5.7 (ATL^+_Ir [Bulling and Jamroga, 2010])

Model checking ATL^+_Ir is PSPACE-complete wrt the

- size of the model and
- length of the formula

(Even for turn-based models with two agents and “flat” $\mathcal{L}_{\text{ATL}^+}$ formulae.)
Proof of The Lower Bound

We prove the \(\text{PSPACE} \)-hardness by a reduction of Quantified Boolean Satisfiability (QSAT), a canonical \(\text{PSPACE} \)-complete problem.

Definition 5.8 (QSAT)

Input: A **Boolean formula** \(\Phi \) (in negation normal form)\(^a\) with \(n \) **propositional variables** \(x_1, \ldots, x_n \).

Output is \[\begin{cases} \text{true}, & \text{if } \exists x_1 \forall x_2 \ldots Q_n x_n \Phi \text{ is satisfiable,} \\ \text{false}, & \text{otherwise.} \end{cases} \]

(Where \(Q_n = \forall \) if \(n \) is even, and \(Q_n = \exists \) if \(n \) is odd.)

\(^a\)That is, negations occur only at literals.
Proof of The Lower Bound

- Model as a game between verifier \(v \) and refuter \(r \).
- Verifier chooses disjunctions, refuter conjunctions.

The reduction proceeds in three stages:

1. **Value-choice-section**: \(v \) and \(r \) assign a value to "their" variables

 \[
 \exists x_1 \forall x_2 \ldots \exists / \forall x_n
 \]

 \[
 \begin{array}{c}
 v \\
 r \\
 v/r
 \end{array}
 \]

2. **Formula-structure-section**: The result of the "game" determines a literal.

3. **Literal-section**: Check whether the literal is consistent with the value of the variable.
\[Cons_i \equiv \Box \neg x_i \lor \Box \neg \neg x_i: x_i \text{ cannot be declared both } \top \text{ and } \bot \text{ during a single execution} \]
Lemma 5.9

\[\exists x_1 \forall x_2 \ldots Q_n x_n \Phi \iff M, q_1 \models_{IR} \langle v \rangle (\bigwedge_{i \in \text{Odd}} \text{Cons}_i \land (\bigwedge_{i \in \text{Even}} \text{Cons}_i \rightarrow \lozenge \text{yes})). \]

Where is the perfect recall needed?
5.6 Imperfect Information and Perfect Recall
Conjecture 1 (ATL_{iR})

Model checking ATL_{iR} is undecidable.

Recently, a proof has been proposed by Dima and Tiplea (June 2010).

Conjecture 2 (ATL^{*}_{iR})

Model checking ATL^{*}_{iR} is undecidable.

Conjecture 3 (ATL^{+}_{iR})

Model checking ATL^{+}_{iR} is undecidable.
5.7 Summary
So, let’s model-check!

Not as easy as it seems.
Complexity of Model Checking CTL and ATL

- Nice results: model checking CTL and ATL is tractable.
- But: the result is relative to the size of the model and the formula.
- Well known catch (CTL): size of models is exponential wrt a higher-level description.
- Another problem: transitions are labelled.
- So: the number of transitions can be exponential in the number of agents.
Summary of Complexity Results

<table>
<thead>
<tr>
<th></th>
<th>(Ir)</th>
<th>(IR)</th>
<th>(ir)</th>
<th>(iR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{L}_{ATL})</td>
<td>(P)</td>
<td>(P)</td>
<td>(\Delta_2^P)</td>
<td>Undecidable(^{†})</td>
</tr>
<tr>
<td>(\mathcal{L}_{ATL^+})</td>
<td>(\Delta_3^P)</td>
<td>(PSPACE)</td>
<td>(\Delta_3^P)</td>
<td>Undecidable(^{†})</td>
</tr>
<tr>
<td>(\mathcal{L}_{ATL^\ast})</td>
<td>(PSPACE)</td>
<td>(2EXPTIME)</td>
<td>(PSPACE)</td>
<td>Undecidable(^{†})</td>
</tr>
</tbody>
</table>

Figure 4: \(^{†}\) These problems are believed to be undecidable.
5.8 References
Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713.

Model checking logics of strategic ability: Complexity.

Verifying agents with memory is harder than it seemed.

Alternating-time logic with imperfect recall.
Electronic Notes in Theoretical Computer Science, 85(2).

Deciding branching time logic.
In STOC ’84: Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 14–24, New York, NY, USA. ACM.
On the synthesis of a reactive module.

Modular Synthesis of Reactive Systems.