Exercise 1 (6 Points, LTL Semantics)
Consider the following transition system over the set of atomic propositions \(\varphi \{a, b\} \):

![Transition System Diagram]

In which states are the following LTL formulae true:
(a) \(Xa \)
(b) \(XXXa \)
(c) \(Gb \)
(d) \(GFa \)
(e) \(G(bUUa) \)
(f) \(F(aUb) \)

Exercise 2 (10 Points, LTL properties)
Suppose we have two users, Peter and Betsy, and a single printer device Printer. Both users perform several tasks, and every now and then they want to print their results on the Printer. Since there is only a single printer, only one user can print a job at a time. Suppose we have the following atomic propositions for Peter at our disposal:

- \(\text{Peter.request} ::= \) indicates that Peter requests usage of the printer;
- \(\text{Peter.use} ::= \) indicates that Peter uses the printer;
- \(\text{Peter.release} ::= \) indicates that Peter releases the printer.

For Betsy, similar predicates are defined. Specify in LTL the following properties:
(a) Mutual exclusion, i.e., only one user at a time can use the printer.
(b) Finite time of usage, i.e., a user can print only for a finite amount of time.
(c) Absence of individual starvation, i.e., if a user wants to print something, he/she is eventually able to do so.
(d) Absence of blocking, i.e., a user can always request to use the printer.
(e) Alternating access, i.e., users must strictly alternate in printing.
Exercise 3 (6 Points, LTL operators)
Let \(\varphi \) and \(\psi \) be LTL formulae. Consider the following new operators:

1. “At next” \(\varphi N \psi \): at the next time where \(\psi \) holds, \(\varphi \) also holds.
2. “While” \(\varphi W \psi \): \(\varphi \) holds at least as long as \(\psi \) does.
3. “Before” \(\varphi B \psi \): if \(\psi \) holds sometime, \(\varphi \) does so before.

Make the definitions of these informally explained operators precise by providing LTL formulae that formalize their intuitive meanings.

Exercise 4 (8 Points, LTL formulae)
Are the following LTL formulae, valid, not valid but satisfiable or unsatisfiable?

1. \(X(a \lor Fa) \rightarrow Fa \),
2. \((Ga) U (Fb) \rightarrow G(a U (Fb)) \),
3. \(GG(\varphi \lor \neg \psi) \leftrightarrow \neg (F(\neg \varphi \land \psi)) \),
4. \(((\varphi U \psi) U \psi) \leftrightarrow (\varphi U \psi) \).