In the aerospace industry, software is widely used in various parts of airborne systems like engines, flight controls or the cabin interior. It is crucial to develop software without any errors to be able to reach a high level of confidence that ensures safety and the avoidance of potential hazards for human beings. Having a source of guidance is necessary to assist in the reaching of this goal. ED-12C/DO-178C is a standard of such guidance for software considerations in airborne systems, so as to reach to a level of confidence for utilizing the software in airborne systems that is required. This standard clarifies software life cycle processes. However, if simulation is to be used in airborne systems, it must be thoroughly analyzed and also made certain that the simulation (which is considered to be a tool) functions appropriately and without producing any errors. ED-215/DO-330 is a supporting standard used for software tool qualification, which explains tool life cycle processes and it is part of the certification process. Alternately, Distributed Simulation Engineering and Execution Process (DSEEP) is a standard for simulation domain which explains simulation life cycle processes. The intent of this study is to create an overlay from the DO-330 to the DSEEP standard. This overlay investigates the identical processes between DO-330/ED-215 and DSEEP standard which consists of terminology mappings, acronyms, definitions, global mapping, and detailed mapping. Such an overlay will be utilized to reduce time, effort, and cost that are needed to obtain a software tool qualification certificate for simulation. In addition, in this study DSEEP will be enhanced to consider DO-330/ED-215 safety requirements.